<< Chapter < Page Chapter >> Page >

Sometimes, when the probability problems are complex, it can be helpful to graph the situation. Tree diagrams and Venn diagrams are two tools that can be used to visualize and solve conditional probabilities.

Tree diagrams

A tree diagram is a special type of graph used to determine the outcomes of an experiment. It consists of "branches" that are labeled with either frequencies or probabilities. Tree diagrams can make some probability problems easier to visualize and solve. The following example illustrates how to use a tree diagram.

In an urn, there are 11 balls. Three balls are red ( R ) and eight balls are blue ( B ). Draw two balls, one at a time, with replacement . "With replacement" means that you put the first ball back in the urn before you select the second ball. The tree diagram using frequencies that show all the possible outcomes follows.

This is a tree diagram with branches showing frequencies of each draw. The first branch shows two lines: 8B and 3R. The second branch has a set of two lines (8B and 3R) for each line of the first branch. Multiply along each line to find 64BB, 24BR, 24RB, and 9RR.
Total = 64 + 24 + 24 + 9 = 121

The first set of branches represents the first draw. The second set of branches represents the second draw. Each of the outcomes is distinct. In fact, we can list each red ball as R 1, R 2, and R 3 and each blue ball as B 1, B 2, B 3, B 4, B 5, B 6, B 7, and B 8. Then the nine RR outcomes can be written as:

  • R 1 R 1
  • R 1 R 2
  • R 1 R 3
  • R 2 R 1
  • R 2 R 2
  • R 2 R 3
  • R 3 R 1
  • R 3 R 2
  • R 3 R 3

The other outcomes are similar.

There are a total of 11 balls in the urn. Draw two balls, one at a time, with replacement. There are 11(11) = 121 outcomes, the size of the sample space .

a. List the 24 BR outcomes: B 1 R 1, B 1 R 2, B 1 R 3, ...

a.

  • B 1 R 1
  • B 1 R 2
  • B 1 R 3
  • B 2 R 1
  • B 2 R 2
  • B 2 R 3
  • B 3 R 1
  • B 3 R 2
  • B 3 R 3
  • B 4 R 1
  • B 4 R 2
  • B 4 R 3
  • B 5 R 1
  • B 5 R 2
  • B 5 R 3
  • B 6 R 1
  • B 6 R 2
  • B 6 R 3
  • B 7 R 1
  • B 7 R 2
  • B 7 R 3
  • B 8 R 1
  • B 8 R 2
  • B 8 R 3

Got questions? Get instant answers now!

b. Using the tree diagram, calculate P ( RR ).

b. P ( RR ) = ( 3 11 ) ( 3 11 ) = 9 121

Got questions? Get instant answers now!

c. Using the tree diagram, calculate P ( RB OR BR ).

c. P ( RB OR BR ) = ( 3 11 ) ( 8 11 ) + ( 8 11 ) ( 3 11 ) = 48 121

Got questions? Get instant answers now!

d. Using the tree diagram, calculate P ( R on 1st draw AND B on 2nd draw).

d. P ( R on 1st draw AND B on 2nd draw) = P ( RB ) = ( 3 11 ) ( 8 11 ) = 24 121

Got questions? Get instant answers now!

e. Using the tree diagram, calculate P ( R on 2nd draw GIVEN B on 1st draw).

e. P ( R on 2nd draw GIVEN B on 1st draw) = P ( R on 2nd| B on 1st) = 24 88 = 3 11

This problem is a conditional one. The sample space has been reduced to those outcomes that already have a blue on the first draw. There are 24 + 64 = 88 possible outcomes (24 BR and 64 BB ). Twenty-four of the 88 possible outcomes are BR . 24 88 = 3 11 .

Got questions? Get instant answers now!

f. Using the tree diagram, calculate P ( BB ).

f. P ( BB ) =  64 121

Got questions? Get instant answers now!

g. Using the tree diagram, calculate P ( B on the 2nd draw given R on the first draw).

g. P ( B  on 2nd draw| R  on 1st draw) =  8 11

There are 9 + 24 outcomes that have R on the first draw (9 RR and 24 RB ). The sample space is then 9 + 24 = 33. 24 of the 33 outcomes have B on the second draw. The probability is then 24 33 .

Got questions? Get instant answers now!

Try it

In a standard deck, there are 52 cards. 12 cards are face cards (event F ) and 40 cards are not face cards (event N ). Draw two cards, one at a time, with replacement. All possible outcomes are shown in the tree diagram as frequencies. Using the tree diagram, calculate P ( FF ).

This is a tree diagram with branches showing frequencies of each draw. The first branch shows two lines: 12F and 40N. The second branch has a set of two lines (12F and 40N) for each line of the first branch. Multiply along each line to find 144FF, 480FN, 480NF, and 1,600NN.

Total number of outcomes is 144 + 480 + 480 + 1600 = 2,704.

P ( FF ) = 144 144 + 480 + 480 + 1,600 = 144 2 , 704 = 9 169

Got questions? Get instant answers now!

An urn has three red marbles and eight blue marbles in it. Draw two marbles, one at a time, this time without replacement, from the urn. "Without replacement" means that you do not put the first ball back before you select the second marble. Following is a tree diagram for this situation. The branches are labeled with probabilities instead of frequencies. The numbers at the ends of the branches are calculated by multiplying the numbers on the two corresponding branches, for example, ( 3 11 ) ( 2 10 ) = 6 110 .

This is a tree diagram with branches showing probabilities of each draw. The first branch shows 2 lines: B 8/11 and R 3/11. The second branch has a set of 2 lines for each first branch line. Below B 8/11 are B 7/10 and R 3/10. Below R 3/11 are B 8/10 and R 2/10. Multiply along each line to find BB 56/110, BR 24/110, RB 24/110, and RR 6/110.
Total = 56 + 24 + 24 + 6 110 = 110 110 = 1

Note

If you draw a red on the first draw from the three red possibilities, there are two red marbles left to draw on the second draw. You do not put back or replace the first marble after you have drawn it. You draw without replacement , so that on the second draw there are ten marbles left in the urn.


Calculate the following probabilities using the tree diagram.

a. P ( RR ) = ________

a. P ( RR ) = ( 3 11 ) ( 2 10 ) = 6 110

Got questions? Get instant answers now!

b. Fill in the blanks:

P ( RB OR BR ) = ( 3 11 ) ( 8 10 )   +  (___)(___)  =   48 110

b. P ( RB OR BR ) = ( 3 11 ) ( 8 10 ) + ( 8 11 ) ( 3 10 ) = 48 110

Got questions? Get instant answers now!

c. P ( R on 2nd| B on 1st) =

c. P ( R on 2nd| B on 1st) = 3 10

Got questions? Get instant answers now!

d. Fill in the blanks.

P ( R on 1st AND B on 2nd) = P ( RB ) = (___)(___) = 24 100

d. P ( R on 1st AND B on 2nd) = P ( RB ) = ( 3 11 ) ( 8 10 ) = 24 100

Got questions? Get instant answers now!

e. Find P ( BB ).

e. P ( BB ) = ( 8 11 ) ( 7 10 )

Got questions? Get instant answers now!

f. Find P ( B on 2nd| R on 1st).

f. Using the tree diagram, P ( B on 2nd| R on 1st) = P ( R | B ) = 8 10 .

Got questions? Get instant answers now!

If we are using probabilities, we can label the tree in the following general way.

This is a tree diagram for a two-step experiment. The first branch shows first outcome: P(B) and P(R). The second branch has a set of 2 lines for each line of the first branch: the probability of B given B = P(BB), the probability of R given B = P(RB), the probability of B given R = P(BR), and the probability of R given R = P(RR).
  • P ( R | R ) here means P ( R on 2nd| R on 1st)
  • P ( B | R ) here means P ( B on 2nd| R on 1st)
  • P ( R | B ) here means P ( R on 2nd| B on 1st)
  • P ( B | B ) here means P ( B on 2nd| B on 1st)
Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask