<< Chapter < Page Chapter >> Page >

» Extremely fast for large memory sizes

» Cost per bit is 5-10 times that of a “normal” RAM cell

» Example: some cache memory units.

2. types of memory

Computer memory system consists a various types of memory. Manufactures produce a number of different types of memory devices having a variety of technologies. The technology affect not only the operating chracteristics but also the manufacturing cost. In the section following we present an overviews of types of memory. You can see the study in detail of memory in the modules 10, 11 and 12.

  • Main Memory (“Internal” memory components)

- RAM (read-write memory): Static RAM, Dynamic RAM

- ROM (Read Only Memories) : ROMs, PROMs, EPROMs, EEPROMs, Flash Memory.

  • Cache memory

The cache memories are high-speed buffers for holding recently accessed data and neighboring data in main memory. The organization and operations of cache provide an apparently fast memory system.

  • External Memory

- Magnetic disks

- RAID technology disks

- Optical disks

- Magnetic tape

3. memory hierarchy

3.1 memory system organization

No matter how big the main memory, how we can organize effectively the memory system in order to store more information than it can hold. The traditional solution to storing a great deal of data is a memory hierarchy.

  • Major design objective of any memory system:

– To provide adequate storage capacity at

– An acceptable level of performance

– At a reasonable cost

  • Four interrelated ways to meet this goal

– Use a hierarchy of storage devices

– Develop automatic space allocation methods for efficient use of the memory

– Through the use of virtual memory techniques, free the user from memory management tasks

– Design the memory and its related interconnection structure so that the proces

3.2 multilevel memories organization

Three key characteristics increase for a memory hierarchy. They are the access time, the storage capacity and the cost. The memory hierarchy is illustrated in figure 9.1.

Figure 9.1. The memory hierarchy

We can see the memory hierarchy with six levels. At the top there are CPU registers, which can be accessed at full CPU speed. Next commes the cache memory, which is currently on order of 32 KByte to a few Mbyte. The main memory is next, with size currently ranging from 16 MB for entry-level systems to tens of Gigabytes. After that come magnetic disks, the current work horse for permanent storage. Finally we have magnetic tape and optical disks for archival storage.

  • Basis of the memory hierarchy

– Registers internal to the CPU for temporary data storage (small in number but very fast)

– External storage for data and programs (relatively large and fast)

– External permanent storage (much larger and much slower)

Figure 9.2 Typical Memory Parameters

  • Characteristics of the memory hierarchy

– Consists of distinct “levels” of memory components

– Each level characterized by its size, access time, and cost per bit

– Each increasing level in the hierarchy consists of modules of larger capacity, slower access time, and lower cost/bit

4. memory performance

Goal of the memory hierarchy. Try to match the processor speed with the rate of information transfer from the lowest element in the hierarchy.

  • The memory hierarchy speed up the memory performance

The memory hierarchy works because of locality of reference

– Memory references made by the processor, for both instructions and data, tend to cluster together

+ Instruction loops, subroutines

+ Data arrays, tables

– Keep these clusters in high speed memory to reduce the average delay in accessing data

– Over time, the clusters being referenced will change -- memory management must deal with this

  • Performance of a two level memory

Example: Suppsose that the processor has access to two level of memory:

– Two-level memory system

– Level 1 access time of 1 us

– Level 2 access time of 10us

– Ave access time = H(1) + (1-H)(10) ns

where: H is a fraction of all memory access that are found in the faster memory (e.g cache)

Figure 9.3. Performance of a two level memory

Questions & Answers

how did the oxygen help a human being
Achol Reply
how did the nutrition help the plants
Achol Reply
Biology is a branch of Natural science which deals/About living Organism.
Ahmedin Reply
what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
cell is the smallest unit of the humanity biologically
Abraham
what is biology
Victoria Reply
what is biology
Abraham
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Computer architecture. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10761/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Computer architecture' conversation and receive update notifications?

Ask