This page is optimized for mobile devices, if you would prefer the desktop version just click here

0.1 Bis2a 02.1 atoms, isotopes, ions, and molecules: the building  (Page 4/59)

To learn more about atoms, isotopes, and how to tell one isotope from another, visit this site and run the simulation.

The periodic table

The different elements are organized and displayed in the periodic table    . Devised by Russian chemist Dmitri Mendeleev (1834–1907) in 1869, the table groups elements that, although unique, share certain chemical properties with other elements. The properties of elements are responsible for their physical state at room temperature: they may be gases, solids, or liquids. Elements also have specific chemical reactivity    , the ability to combine and to chemically bond with each other.

In the periodic table, shown in [link] , the elements are organized and displayed according to their atomic number and are arranged in a series of rows and columns based on shared chemical and physical properties. In addition to providing the atomic number for each element, the periodic table also displays the element’s atomic mass. Looking at carbon, for example, its symbol (C) and name appear, as well as its atomic number of six (in the upper left-hand corner) and its atomic mass of 12.11.

The periodic table shows the atomic mass and atomic number of each element. The atomic number appears above the symbol for the element and the approximate atomic mass appears below it.

The periodic table groups elements according to chemical properties. The differences in chemical reactivity between the elements are based on the number and spatial distribution of an atom’s electrons. Atoms that chemically react and bond to each other form molecules. Molecules are simply two or more atoms chemically bonded together. Logically, when two atoms chemically bond to form a molecule, their electrons, which form the outermost region of each atom, come together first as the atoms form a chemical bond.

Electron shells and the bohr model

It should be stressed that there is a connection between the number of protons in an element, the atomic number that distinguishes one element from another, and the number of electrons it has. In all electrically neutral atoms, the number of electrons is the same as the number of protons. Thus, each element, at least when electrically neutral, has a characteristic number of electrons equal to its atomic number.

An early model of the atom was developed in 1913 by Danish scientist Niels Bohr (1885–1962). The Bohr model shows the atom as a central nucleus containing protons and neutrons, with the electrons in circular orbitals at specific distances from the nucleus, as illustrated in [link] . These orbits form electron shells or energy levels, which are a way of visualizing the number of electrons in the outermost shells. These energy levels are designated by a number and the symbol “n.” For example, 1n represents the first energy level located closest to the nucleus.

The Bohr model was developed by Niels Bohrs in 1913. In this model, electrons exist within principal shells. An electron normally exists in the lowest energy shell available, which is the one closest to the nucleus. Energy from a photon of light can bump it up to a higher energy shell, but this situation is unstable, and the electron quickly decays back to the ground state. In the process, a photon of light is released.
<< Chapter < Page Page > Chapter >>
MCQ 1 FlashCards 2 Terms 44

Read also:

OpenStax, Chemistry of life: bis2a modules 2.0 to 2.3 (including appendix i and ii). OpenStax CNX. Jun 15, 2015 Download for free at https://legacy.cnx.org/content/col11826/1.1
Google Play and the Google Play logo are trademarks of Google Inc.
Jobilize.com uses cookies to ensure that you get the best experience. By continuing to use Jobilize.com web-site, you agree to the Terms of Use and Privacy Policy.