<< Chapter < Page Chapter >> Page >
Graph of three functions, h(x)=x^2 in green, g(x)=x^4 in orange, and f(x)=x^6 in blue.
Even-power functions

To describe the behavior as numbers become larger and larger, we use the idea of infinity. We use the symbol for positive infinity and −∞ for negative infinity. When we say that “ x approaches infinity,” which can be symbolically written as x , we are describing a behavior; we are saying that x is increasing without bound.

With the positive even-power function, as the input increases or decreases without bound, the output values become very large, positive numbers. Equivalently, we could describe this behavior by saying that as x approaches positive or negative infinity, the f ( x ) values increase without bound. In symbolic form, we could write

as  x ± ,   f ( x )

[link] shows the graphs of f ( x ) = x 3 , g ( x ) = x 5 , and h ( x ) = x 7 , which are all power functions with odd, whole-number powers. Notice that these graphs look similar to the cubic function in the toolkit. Again, as the power increases, the graphs flatten near the origin and become steeper away from the origin.

Graph of three functions, f(x)=x^3 in green, g(x)=x^5 in orange, and h(x)=x^7 in blue.
Odd-power functions

These examples illustrate that functions of the form f ( x ) = x n reveal symmetry of one kind or another. First, in [link] we see that even functions of the form f ( x ) = x n n even, are symmetric about the y - axis. In [link] we see that odd functions of the form f ( x ) = x n n  odd, are symmetric about the origin.

For these odd power functions, as x approaches negative infinity, f ( x ) decreases without bound. As x approaches positive infinity, f ( x ) increases without bound. In symbolic form we write

as   x ,   f ( x )   as   x ,   f ( x )

The behavior of the graph of a function as the input values get very small ( x ) and get very large ( x ) is referred to as the end behavior    of the function. We can use words or symbols to describe end behavior.

[link] shows the end behavior of power functions in the form f ( x ) = k x n where n is a non-negative integer depending on the power and the constant.

Graph of an even-powered function with a positive constant. As x goes to negative infinity, the function goes to positive infinity; as x goes to positive infinity, the function goes to positive infinity. Graph of an odd-powered function with a positive constant. As x goes to negative infinity, the function goes to positive infinity; as x goes to positive infinity, the function goes to negative infinity. Graph of an even-powered function with a negative constant. As x goes to negative infinity, the function goes to negative infinity; as x goes to positive infinity, the function goes to negative infinity. Graph of an odd-powered function with a negative constant. As x goes to negative infinity, the function goes to negative infinity; as x goes to positive infinity, the function goes to negative infinity.

Given a power function f ( x ) = k x n where n is a non-negative integer, identify the end behavior.

  1. Determine whether the power is even or odd.
  2. Determine whether the constant is positive or negative.
  3. Use [link] to identify the end behavior.

Identifying the end behavior of a power function

Describe the end behavior of the graph of f ( x ) = x 8 .

The coefficient is 1 (positive) and the exponent of the power function is 8 (an even number). As x approaches infinity, the output (value of f ( x ) ) increases without bound. We write as x , f ( x ) . As x approaches negative infinity, the output increases without bound. In symbolic form, as x ,   f ( x ) . We can graphically represent the function as shown in [link] .

Graph of f(x)=x^8.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Identifying the end behavior of a power function.

Describe the end behavior of the graph of f ( x ) = x 9 .

The exponent of the power function is 9 (an odd number). Because the coefficient is –1 (negative), the graph is the reflection about the x - axis of the graph of f ( x ) = x 9 . [link] shows that as x approaches infinity, the output decreases without bound. As x approaches negative infinity, the output increases without bound. In symbolic form, we would write

as   x ,   f ( x )   as   x ,   f ( x )
Graph of f(x)=-x^9.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

what is chemistry
ISIYAKA Reply
what is oxidation
Chidiebube Reply
calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask