<< Chapter < Page Chapter >> Page >

v C = v B + v C B v C B = v C - v B

This is an important relation. As a matter of fact, we shall require this form of equation most of the time, while working with problems in relative motion. This equation can be used effectively to determine relative velocity of two moving objects with uniform velocity (C and B), when their velocities in Earth’s reference are known.

Note : As in the case of one dimensional case, we can have a working methodology to find the relative velocity in two dimensions. In brief, we drop the reference to ground all together. We simply draw two velocities as given v A , v B . Then, we reverse the direction of reference velocity v B and find the resultant relative velocity, v A B = v A - v B , applying parallelogram theorem or using algebraic method involving unit vectors.

In general, for any two objects “A” and “B”, moving with constant velocities,

v A B = v A - v B

Problem : A person is driving a car towards east at a speed of 80 km/hr. A train appears to move towards north with a velocity of 80√3 km/hr to the person driving the car. Find the speed of the train as measured with respect to earth.

Solution : Let us first identify the car and train as “A” and “B”. Here, we are provided with the speed of car (“A”) with respect to Earth i.e. " v A " and speed of train (“B”) with respect to “A” i.e v BA .

v A = 80 km / hr v B A = 80 3 km / hr

Relative velocity

We are required to find the speed of train (“B”) with respect to Earth i.e. v B , . Fromequation of relative motion, we have :

v B A = v B - v A v B = v B A + v A

To evaluate the right hand side of the equation, we draw vectors “ v B A ” and “ v A ” and use parallelogram law to find the actual speed of the train.

Relative velocity

v B = ( v B A 2 + v A 2 ) = { ( 80 3 ) 2 + 80 2 } = 160 km / hr

Got questions? Get instant answers now!

Evaluation of equation using analytical technique

We have already used analytical method to evaluate vector equation of relative velocity. Analytical method makes use of Pythagoras or Parallelogram theorem to determine velocities.

Analytical method, however, is not limited to making use of Pythagoras or Parallelogram theorem. Depending on situation, we may use simple trigonometric relation as well to evaluate equation of relative motion in two dimensions. Let us work out an exercise to emphasize application of such geometric (trigonometric) analytical technique.

Problem : A person, standing on the road, holds his umbrella to his back at an angle 30° with the vertical to protect himself from rain. He starts running at a speed of 10 m/s along a straight line. He finds that he now has to hold his umbrella vertically to protect himself from the rain. Find the speed of raindrops as measured with respect to (i) ground and (ii) the moving person.

Solution : Let us first examine the inputs available in this problem. To do this let us first identify different entities with symbols. Let A and B denote the person and the rain respectively. The initial condition of the person gives the information about the direction of rain with respect to ground - notably not the speed with which rain falls. It means that we know the direction of velocity v B . The subsequent condition, when person starts moving, tells us the velocity of the person “A” with respect to ground i.e v A . Also, it is given that the direction of relative velocity of rain “B” with respect to the moving person “A” is vertical i.e. we know the direction of relative velocity v B A .

We draw three vectors involved in the problem as shown in the figure. OP represents v A ; OQ represents v B ; OR represents v B A .

Relative velocity

In ΔOCB,

v B = OR = QR sin 30 0 v B = 10 1 2 = 20 m / s

and

v B A = OQ = QR tan 30 0 v B A = 10 1 3 = 10 3 m / s

Got questions? Get instant answers now!

Equation in component form

So far we have used analytical method to evaluate vector equation of relative velocity. It is evident that vector equation also renders to component form – particularly when inputs are given in component form along with unit vectors.

Here, we shall highlight one very important aspect of component analysis, which helps us to analyze complex problems. The underlying concept is that consideration of motion in mutually perpendicular direction is independent of each other. This aspect of independence is emphasized in analyzing projectile motion, where motions in vertical and horizontal directions are found to be independent of each other (it is an experimental fact).

We work out the exercise to illustrate the application of the technique, involving component analysis.

Problem : Three particles A,B and C situated at the vertices of an equilateral triangle starts moving simultaneously at a constant speed “v” in the direction of adjacent particle, which falls ahead in the anti-clockwise direction. If “a” be the side of the triangle, then find the time when they meet.

Solution : Here, particle “A” follows “B”, “B” follows “C” and “C” follows “A”. The direction of motion of each particle keeps changing as motion of each particle is always directed towards other particle. The situation after a time “t” is shown in the figure with a possible outline of path followed by the particles before they meet.

Relative velocity

This problem appears to be complex as the path of motion is difficult to be defined. But, it has a simple solution in component analysis. Let us consider the pair “A” and “B”. The initial component of velocities in the direction of line joining the initial position of the two particles is “v” and “vcosθ” as shown in the figure here :

Relative velocity

The component velocities are directed towards eachother. Now, considering the linear (one dimensional) motion in the direction of AB, the relative velocity of “A” with respect to “B” is :

v A B = v A - v B v A B = v - ( - v cos θ ) = v + v cos θ

In equilateral triangle, θ = 60°,

v A B = v + v cos 60 0 = v + v 2 = 3 v 2

The time taken to cover the displacement “a” i..e. the side of the triangle,

t = 2 a 3 v

Got questions? Get instant answers now!

Check your understanding

Check the module titled Relative velocity in two dimensions (application) to test your understanding of the topics covered in this module.

Questions & Answers

prostaglandin and fever
Maha Reply
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask