<< Chapter < Page Chapter >> Page >

Interpretation of equations of motion

One dimensional motion felicitates simplified paradigm for interpreting equations of motion. Description of motion in one dimension involves mostly the issue of “magnitude” and only one aspect of direction. The only possible issue of direction here is that the body undergoing motion in one dimension may reverse its direction during the course of motion. This means that the body may either keep moving in the direction of initial velocity or may start moving in the opposite direction of the initial velocity at certain point of time during the motion. This depends on the relative direction of initial velocity and acceleration. Thus, there are two paradigms :

  • Constant force is applied in the direction of initial velocity.
  • Constant force is applied in the opposite direction of initial velocity.

Irrespective of the above possibilities, one fundamental attribute of motion in one dimension is that all parameters defining motion i.e initial velocity, final velocity and acceleration act along a straight line.

Constant acceleration (force) is applied in the direction of velocity

The magnitude of velocity increases by the magnitude of acceleration at the end of every second (unit time interval). In this case, final velocity at any time instant is greater than velocity at an earlier instant. The motion is not only in one dimension i.e. linear , but also unidirectional. Take the example of a ball released (initial velocity is zero) at a certain height ‘h’ from the surface. The velocity of the ball increases by the magnitude of ‘g’ at the end of every second. If the body has traveled for 3 seconds, then the velocity after 3 seconds is 3g (v= 0 + 3 x g = 3g m/s).

Attributes of motion

Attributes of motion as the ball falls under gravity

In this case, all parameters defining motion i.e initial velocity, final velocity and acceleration not only act along a straight line, but also in the same direction. As a consequence, displacement is always increasing during the motion like distance. This fact results in one of the interesting aspect of the motion that magnitude of displacement is equal to distance. For this reason, average speed is also equal to the magnitude of average velocity.

s = | x |

and

Δ s Δ t = | Δ x Δ t |

Constant acceleration (force) is applied in the opposite direction of velocity

The magnitude of velocity decreases by the magnitude of acceleration at the end of every second (unit time interval). In this case, final velocity at any time instant is either less than velocity at an earlier instant or has reversed its direction. The motion is in one dimension i.e. linear, but may be unidirectional or bidirectional. Take the example of a ball thrown (initial velocity is ,say, 30 m/s) vertically from the surface. The velocity of the ball decreases by the magnitude of ‘g’ at the end of every second. If the body has traveled for 3 seconds, then the velocity after 3 seconds is 30 - 3g = 0 (assume g = 10 m / s 2 ).

Attributes of motion

Attributes of motion as the ball moves up against gravity

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask