<< Chapter < Page Chapter >> Page >

Polygons are closed figures with three or more straight sides. If all the sides are the same length, and all the internal angles are equal, we call them regul a r polygons. Triangles are three-sided polygons, and an equil a ter a l triangle is a regul a r three-sided polygon. A square is a regular four-sided polygon. Pent agons have five sides, hexagons have six sides and heptagons have seven. Make a list of as many of these special names as you can find.

Here are several closed plane figures. Decorate them and write the name of each polygon on the shape.

B. Investig a tion

Choose four polygons from the group above, all regular, but with four different numbers of sides. Now measure the sizes of the internal angles of each. Try to find out whether it is possible to make a formula to tell you how large the angles are, and what they add up to.

The following table will be helpful. As you can see, there are infinitely many polygons.

No. of sides a = internal angle size b = 360 – a c = b – 180 Total of a Total of c
Three a = c =
Four a = c =
Five a = c =
Six a = c =
Seven a = c =
Twelve 12× a = 12× c =
  • The characteristics in the table above are needed when you have to decide how to tile a floor (say) with regular polygons so that they don’t overlap and don’t leave gaps. Some of these polygons will work alone, and some can or must be combined.
  • Design and draw a repeating tiling pattern of your own, using only regular polygons and colour it so that the pattern shows clearly.

C. Three-dimension a l closed figures

  • If these shapes have sides made up of polygons, then we call them polyhedr a. A regul a r polyhedron has faces that are congruent regular polygons, with internal angles the same shape and size.
  • In contrast to the polygons, there are only five regular polyhedra. They have been known since the time of Plato and the Greek mathematicians; this is why they are known as the five Platonic Solids.

D. Project

Research the five Platonic Solids, finding their names and properties, and other interesting deductions and facts about them. Make an attractive poster or models of these solids showing the facts associated with each. Below are pictures of the five solids.

Assessment

LO 3
Space and Shape (Geometry)The learner will be able to describe and represent characteristics and relationships between two-dimensional shapes and three-dimensional objects in a variety of orientations and positions.
We know this when the learner :
3.1 recognises, visualises and names geometric figures and solids in natural and cultural forms and geometric settings, including:3.1.1 regular and irregular polygons and polyhedra;3.1.2 spheres;3.1.3 cylinders;3.2 in contexts that include those that may be used to build awareness of social, cultural and environmental issues, describes the interrelationships of the properties of geometric figures and solids with justification, including:3.2.1 congruence and straight line geometry;3.3 uses geometry of straight lines and triangles to solve problems and to justify relationships in geometric figures;3.4 draws and/or constructs geometric figures and makes models of solids in order to investigate and compare their properties and model situations in the environment;
3.5 uses transformations, congruence and similarity to investigate, describe and justify (alone and/or as a member of a group or team) properties of geometric figures and solids, including tests for similarity and congruence of triangles.

Memorandum

Discussion

  • This guide includes two pages of figures for constructing simple right prisms. Photocopy enough for the learners to make at least two of the figures. It would be best if the copies could be made on very light card (or heavy paper). If they are asked to colour some of the parts (e.g. the base and top) it might make it easier to explain some of the more difficult formulae.
  • The two formulae for right prisms are, in general:
  • Total Surface Area = double the base area + height of prism × perimeter of base
  • Volume = base area × height of prism
  • Ensure that learners are clear on the units (squared or cubed) appropriate to each formula.
  • Another difficulty that learners might encounter is that the word height is used in calculating the area of triangles as well as being one of the dimensions of right prisms. A useful trick is to use h for the triangle case and H for the prism case.
  • Breaking down the steps required for the calculations is a useful method for learners who get confused by the components in the formula. Of course, very competent learners will substitute values straight into the formula. This is an effective system, and should be encouraged where appropriate.

Solutions – exercise:

Rectangular prism: TBO = 412 cm 2 Vol = 480 cm 3

Triangular prism: TBO = 307,71 cm 2 Vol = 360 cm 3

Cylinder: TBO = 402,12 cm 2 Vol = 603,19 cm 3

Granny’s Jam Pot: Vol = 8 595,40 cm 2

11 Square–based jars: Vol = 8 096 cm 2

11 Rectangle–based jars: Vol =8 633,63 cm 2

So, granny must use the rectangular–based jars if she wants to fit all the jam in!

3 = triangle; 4 = tetragon; 5 = pentagon; 6 = hexagon; 7 = heptagon; 8 = octagon; * = not polygon

No of sides a = internal angle size b = 360° – a c = b – 180° Total of a Total of c
Three 60° 300° 120° a = 180° c = 360°
Four 90° 270° 90° a = 360° c = 360°
Five 108° 252° 72° a = 540° c = 360°
Six 120° 240° 60° a = 720° c = 360°
Seven 308,57° 51,43° –128,57° a = 2160° c = –360°
Twelve 330° 30° –150° 12× a = 3960° 12× c = –360°

TEST 1

1. Explain how you would recognise a right prism.

2. Explain how you could find the base of a right prism.

3. Calculate the total surface area and the volume of each of the following three prisms. Give your answers accurate to two decimal places.

TEST 1 – Memorandum

1. Essential points in the explanation: three-dimensional; top and base congruent plane shapes; side(s) at right angles to base.

2. Any reasonable explanation, e.g. if the chosen side is placed at the bottom, the description of a right prism fits what you see.

3. Rectangular right prism: TBO = 1 939,68 cm 2 Volume = 5 769,72 cm 3

Triangular right prism: TBO = 1 507,74 mm 2 Volume = 2 312 mm 3

Cylinder: TBO = 8 022,37 m 2 Volume = 41 593,67 m 3

Questions & Answers

how to create a software using Android phone
Wiseman Reply
how
basra
what is the difference between C and C++.
Yan Reply
what is software
Sami Reply
software is a instructions like programs
Shambhu
what is the difference between C and C++.
Yan
yes, how?
Hayder
what is software engineering
Ahmad
software engineering is a the branch of computer science deals with the design,development, testing and maintenance of software applications.
Hayder
who is best bw software engineering and cyber security
Ahmad
Both software engineering and cybersecurity offer exciting career prospects, but your choice ultimately depends on your interests and skills. If you enjoy problem-solving, programming, and designing software syste
Hayder
what's software processes
Ntege Reply
I haven't started reading yet. by device (hardware) or for improving design Lol? Here. Requirement, Design, Implementation, Verification, Maintenance.
Vernon
I can give you a more valid answer by 5:00 By the way gm.
Vernon
it is all about designing,developing, testing, implementing and maintaining of software systems.
Ehenew
hello assalamualaikum
Sami
My name M Sami I m 2nd year student
Sami
what is the specific IDE for flutter programs?
Mwami Reply
jegudgdtgd my Name my Name is M and I have been talking about iey my papa john's university of washington post I tagged I will be in
Mwaqas Reply
yes
usman
how disign photo
atul Reply
hlo
Navya
hi
Michael
yes
Subhan
Show the necessary steps with description in resource monitoring process (CPU,memory,disk and network)
samuel Reply
What is software engineering
Tafadzwa Reply
Software engineering is a branch of computer science directed to writing programs to develop Softwares that can drive or enable the functionality of some hardwares like phone , automobile and others
kelvin
if any requirement engineer is gathering requirements from client and after getting he/she Analyze them this process is called
Alqa Reply
The following text is encoded in base 64. Ik5ldmVyIHRydXN0IGEgY29tcHV0ZXIgeW91IGNhbid0IHRocm93IG91dCBhIHdpbmRvdyIgLSBTdGV2ZSBXb3puaWFr Decode it, and paste the decoded text here
Julian Reply
what to do you mean
Vincent
hello
ALI
how are you ?
ALI
What is the command to list the contents of a directory in Unix and Unix-like operating systems
George Reply
how can i make my own software free of cost
Faizan Reply
like how
usman
hi
Hayder
The name of the author of our software engineering book is Ian Sommerville.
Doha Reply
what is software
Sampson Reply
the set of intruction given to the computer to perform a task
Noor
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mathematics grade 9. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col11056/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mathematics grade 9' conversation and receive update notifications?

Ask