<< Chapter < Page Chapter >> Page >

Appendix

Important proofs and derivations

Product Rule

log a x y = log a x + log a y

Proof:

Let m = log a x and n = log a y .

Write in exponent form.

x = a m and y = a n .

Multiply.

x y = a m a n = a m + n

a m + n = x y log a ( x y ) = m + n = log a x + log b y

Change of Base Rule

log a b = log c b log c a log a b = 1 log b a

where x and y are positive, and a > 0 , a 1.

Proof:

Let x = log a b .

Write in exponent form.

a x = b

Take the log c of both sides.

log c a x = log c b x log c a = log c b x = log c b log c a log a b = log c b log a b

When c = b ,

log a b = log b b log b a = 1 log b a

Heron’s Formula

A = s ( s a ) ( s b ) ( s c )

where s = a + b + c 2

Proof:

Let a , b , and c be the sides of a triangle, and h be the height.

A triangle with sides labeled: a, b and c.  A line runs through the center of the triangle, bisecting the top angle; this line is labeled: h.

So s = a + b + c 2 .

We can further name the parts of the base in each triangle established by the height such that p + q = c .

A triangle with sides labeled: a, b, and c.  A line runs through the center of the triangle bisecting the angle at the top; this line is labeled: h. The two new line segments on the base of the triangle are labeled: p and q.

Using the Pythagorean Theorem, h 2 + p 2 = a 2 and h 2 + q 2 = b 2 .

Since q = c p , then q 2 = ( c p ) 2 . Expanding, we find that q 2 = c 2 2 c p + p 2 .

We can then add h 2 to each side of the equation to get h 2 + q 2 = h 2 + c 2 2 c p + p 2 .

Substitute this result into the equation h 2 + q 2 = b 2 yields b 2 = h 2 + c 2 2 c p + p 2 .

Then replacing h 2 + p 2 with a 2 gives b 2 = a 2 2 c p + c 2 .

Solve for p to get

p = a 2 + b 2 c 2 2 c

Since h 2 = a 2 p 2 , we get an expression in terms of a , b , and c .

h 2 = a 2 p 2 = ( a + p ) ( a p ) = [ a + ( a 2 + c 2 b 2 ) 2 c ] [ a ( a 2 + c 2 b 2 ) 2 c ] = ( 2 a c + a 2 + c 2 b 2 ) ( 2 a c a 2 c 2 + b 2 ) 4 c 2 = ( ( a + c ) 2 b 2 ) ( b 2 ( a c ) 2 ) 4 c 2 = ( a + b + c ) ( a + c b ) ( b + a c ) ( b a + c ) 4 c 2 = ( a + b + c ) ( a + b + c ) ( a b + c ) ( a + b c ) 4 c 2 = 2 s ( 2 s a ) ( 2 s b ) ( 2 s c ) 4 c 2

Therefore,

h 2 = 4 s ( s a ) ( s b ) ( s c ) c 2 h = 2 s ( s a ) ( s b ) ( s c ) c

And since A = 1 2 c h , then

A = 1 2 c 2 s ( s a ) ( s b ) ( s c ) c = s ( s a ) ( s b ) ( s c )

Properties of the Dot Product

u · v = v · u

Proof:

u · v = u 1 , u 2 , ... u n · v 1 , v 2 , ... v n = u 1 v 1 + u 2 v 2 + ... + u n v n = v 1 u 1 + v 2 u 2 + ... + v n v n = v 1 , v 2 , ... v n · u 1 , u 2 , ... u n = v · u

u · ( v + w ) = u · v + u · w

Proof:

u · ( v + w ) = u 1 , u 2 , ... u n · ( v 1 , v 2 , ... v n + w 1 , w 2 , ... w n ) = u 1 , u 2 , ... u n · v 1 + w 1 , v 2 + w 2 , ... v n + w n = u 1 ( v 1 + w 1 ) , u 2 ( v 2 + w 2 ) , ... u n ( v n + w n ) = u 1 v 1 + u 1 w 1 , u 2 v 2 + u 2 w 2 , ... u n v n + u n w n = u 1 v 1 , u 2 v 2 , ... , u n v n + u 1 w 1 , u 2 w 2 , ... , u n w n = u 1 , u 2 , ... u n · v 1 , v 2 , ... v n + u 1 , u 2 , ... u n · w 1 , w 2 , ... w n = u · v + u · w

u · u = | u | 2

Proof:

u · u = u 1 , u 2 , ... u n · u 1 , u 2 , ... u n = u 1 u 1 + u 2 u 2 + ... + u n u n = u 1 2 + u 2 2 + ... + u n 2 = | u 1 , u 2 , ... u n | 2 = v · u

Standard Form of the Ellipse centered at the Origin

1 = x 2 a 2 + y 2 b 2

Derivation

An ellipse consists of all the points for which the sum of distances from two foci is constant:

( x ( c ) ) 2 + ( y 0 ) 2 + ( x c ) 2 + ( y 0 ) 2 = constant

An ellipse centered at the origin on an x, y-coordinate plane.  Points C1 and C2 are plotted at the points (0, b) and (0, -b) respectively; these points appear on the ellipse.  Points V1 and V2 are plotted at the points (-a, 0) and (a, 0) respectively; these points appear on the ellipse.  Points F1 and F2 are plotted at the points (-c, 0) and (c, 0) respectively; these points appear on the x-axis, but not the ellipse. The point (x, y) appears on the ellipse in the first quadrant.  Dotted lines extend from F1 and F2 to the point (x, y).

Consider a vertex.

An ellipse centered at the origin.  The points C1 and C2 are plotted at the points (0, b) and (0, -b) respectively; these points are on the ellipse.  The points V1 and V2 are plotted at the points (-a, 0) and (a, 0) respectively; these points are on the ellipse.  The points F1 and F2 are plotted at the points (-c, 0) and (c, 0) respectively; these points are on the x-axis and not on the ellipse.  A line extends from the point F1 to a point (x, y) which is at the point (a, 0).  A line extends from the point F2 to the point (x, y) as well.

Then, ( x ( c ) ) 2 + ( y 0 ) 2 + ( x c ) 2 + ( y 0 ) 2 = 2 a

Consider a covertex.

An ellipse centered at the origin.  The points C1 and C2 are plotted at the points (0, b) and (0, -b) respectively; these points are on the ellipse.  The points V1 and V2 are plotted at the points (-a, 0) and (a, 0) respectively; these points are on the ellipse.  The points F1 and F2 are plotted at the points (-c, 0) and (c, 0) respectively; these points are on the x-axis and not on the ellipse.  There is a point (x, y) which is plotted at (0, b). A line extends from the origin to the point (c, 0), this line is labeled: c.  A line extends from the origin to the point (x, y), this line is labeled: b.  A line extends from the point (c, 0) to the point (x, y); this line is labeled: (1/2)(2a)=a.  A dotted line extends from the point (-c, 0) to the point (x, y); this line is labeled: (1/2)(2a)=a.

Then b 2 + c 2 = a 2 .

( x ( c ) ) 2 + ( y 0 ) 2 + ( x c ) 2 + ( y 0 ) 2 = 2 a ( x + c ) 2 + y 2 = 2 a ( x c ) 2 + y 2 ( x + c ) 2 + y 2 = ( 2 a ( x c ) 2 + y 2 ) 2 x 2 + 2 c x + c 2 + y 2 = 4 a 2 4 a ( x c ) 2 + y 2 + ( x c ) 2 + y 2 x 2 + 2 c x + c 2 + y 2 = 4 a 2 4 a ( x c ) 2 + y 2 + x 2 2 c x + y 2 2 c x = 4 a 2 4 a ( x c ) 2 + y 2 2 c x 4 c x 4 a 2 = 4 a ( x c ) 2 + y 2 1 4 a ( 4 c x 4 a 2 ) = ( x c ) 2 + y 2 a c a x = ( x c ) 2 + y 2 a 2 2 x c + c 2 a 2 x 2 = ( x c ) 2 + y 2 a 2 2 x c + c 2 a 2 x 2 = x 2 2 x c + c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 c 2 = x 2 c 2 a 2 x 2 + y 2 a 2 c 2 = x 2 ( 1 c 2 a 2 ) + y 2

Let 1 = a 2 a 2 .

a 2 c 2 = x 2 ( a 2 c 2 a 2 ) + y 2 1 = x 2 a 2 + y 2 a 2 c 2

Because b 2 + c 2 = a 2 , then b 2 = a 2 c 2 .

1 = x 2 a 2 + y 2 a 2 c 2 1 = x 2 a 2 + y 2 b 2

Standard Form of the Hyperbola

1 = x 2 a 2 y 2 b 2

Derivation

A hyperbola is the set of all points in a plane such that the absolute value of the difference of the distances between two fixed points is constant.

Side-by-side graphs of hyperbole.  In Diagram 1: The foci F’ and F are labeled and can be found a little in front of the opening of the hyperbola.  A point P at (x,y) on the right curve is labeled.  A line extends from the F’ focus to the point P labeled: D1.  A line extends from the F focus to the point P labeled: D2.  In Diagram 2:  The foci F’ and F are labeled and can be found a little in front of the opening of the hyperbola.  A point V is labeled at the vertex of the right hyperbola.  A line extends from the F’ focus to the point V labeled: D1.  A line extends from the F focus to the point V labeled: D2.

Diagram 1: The difference of the distances from Point P to the foci is constant:

( x ( c ) ) 2 + ( y 0 ) 2 ( x c ) 2 + ( y 0 ) 2 = constant

Diagram 2: When the point is a vertex, the difference is 2 a .

( x ( c ) ) 2 + ( y 0 ) 2 ( x c ) 2 + ( y 0 ) 2 = 2 a

( x ( c ) ) 2 + ( y 0 ) 2 ( x c ) 2 + ( y 0 ) 2 = 2 a ( x + c ) 2 + y 2 ( x c ) 2 + y 2 = 2 a ( x + c ) 2 + y 2 = 2 a + ( x c ) 2 + y 2 ( x + c ) 2 + y 2 = ( 2 a + ( x c ) 2 + y 2 ) x 2 + 2 c x + c 2 + y 2 = 4 a 2 + 4 a ( x c ) 2 + y 2 x 2 + 2 c x + c 2 + y 2 = 4 a 2 + 4 a ( x c ) 2 + y 2 + x 2 2 c x + y 2 2 c x = 4 a 2 + 4 a ( x c ) 2 + y 2 2 c x 4 c x 4 a 2 = 4 a ( x c ) 2 + y 2 c x a 2 = a ( x c ) 2 + y 2 ( c x a 2 ) 2 = a 2 ( ( x c ) 2 + y 2 ) c 2 x 2 2 a 2 c 2 x 2 + a 4 = a 2 x 2 2 a 2 c 2 x 2 + a 2 c 2 + a 2 y 2 c 2 x 2 + a 4 = a 2 x 2 + a 2 c 2 + a 2 y 2 a 4 a 2 c 2 = a 2 x 2 c 2 x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( a 2 c 2 ) x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( c 2 a 2 ) x 2 a 2 y 2

Define b as a positive number such that b 2 = c 2 a 2 .

a 2 b 2 = b 2 x 2 a 2 y 2 a 2 b 2 a 2 b 2 = b 2 x 2 a 2 b 2 a 2 y 2 a 2 b 2 1 = x 2 a 2 y 2 b 2

Trigonometric identities

Pythagorean Identity cos 2 t + sin 2 t = 1 1 + tan 2 t = sec 2 t 1 + cot 2 t = csc 2 t
Even-Odd Identities cos ( t ) = c o s t sec ( t ) = sec t sin ( t ) = sin t tan ( t ) = tan t csc ( t ) = csc t cot ( t ) = cot t
Cofunction Identities cos t = sin ( π 2 t ) sin t = cos ( π 2 t ) tan t = cot ( π 2 t ) cot t = tan ( π 2 t ) sec t = csc ( π 2 t ) csc t = sec ( π 2 t )
Fundamental Identities tan t = sin t cos t sec t = 1 cos t csc t = 1 sin t c o t t = 1 tan t = cos t sin t
Sum and Difference Identities cos ( α + β ) = cos α cos β sin α sin β cos ( α β ) = cos α cos β + sin α sin β sin ( α + β ) = sin α cos β + cos α sin β sin ( α β ) = sin α cos β cos α sin β tan ( α + β ) = tan α + tan β 1 tan α tan β tan ( α β ) = tan α tan β 1 + tan α tan β
Double-Angle Formulas sin ( 2 θ ) = 2 sin θ cos θ cos ( 2 θ ) = cos 2 θ sin 2 θ cos ( 2 θ ) = 1 2 sin 2 θ cos ( 2 θ ) = 2 cos 2 θ 1 tan ( 2 θ ) = 2 tan θ 1 tan 2 θ
Half-Angle Formulas sin α 2 = ± 1 cos α 2 cos α 2 = ± 1 + cos α 2 tan α 2 = ± 1 cos α 1 + cos α tan α 2 = sin α 1 + cos α tan α 2 = 1 cos α sin α
Reduction Formulas sin 2 θ = 1 cos ( 2 θ ) 2 cos 2 θ = 1 + cos ( 2 θ ) 2 tan 2 θ = 1 cos ( 2 θ ) 1 + cos ( 2 θ )
Product-to-Sum Formulas cos α cos β = 1 2 [ cos ( α β ) + cos ( α + β ) ] sin α cos β = 1 2 [ sin ( α + β ) + sin ( α β ) ] sin α sin β = 1 2 [ cos ( α β ) cos ( α + β ) ] cos α sin β = 1 2 [ sin ( α + β ) sin ( α β ) ]
Sum-to-Product Formulas sin α + sin β = 2 sin ( α + β 2 ) cos ( α β 2 ) sin α sin β = 2 sin ( α β 2 ) cos ( α + β 2 ) cos α cos β = 2 sin ( α + β 2 ) sin ( α β 2 ) cos α + cos β = 2 cos ( α + β 2 ) cos ( α β 2 )
Law of Sines sin α a = sin β b = sin γ c a sin α = b sin β = c sin γ
Law of Cosines a 2 = b 2 + c 2 2 b c cos α b 2 = a 2 + c 2 2 a c cos β c 2 = a 2 + b 2 2 a b cos γ

Toolkit functions

Three graphs side-by-side. From left to right, graph of the identify function, square function, and square root function. All three graphs extend from -4 to 4 on each axis.
Three graphs side-by-side. From left to right, graph of the cubic function, cube root function, and reciprocal function. All three graphs extend from -4 to 4 on each axis.
Three graphs side-by-side. From left to right, graph of the absolute value function, exponential function, and natural logarithm function. All three graphs extend from -4 to 4 on each axis.

Trigonometric functions

Unit Circle

Graph of unit circle with angles in degrees, angles in radians, and points along the circle inscribed.
Angle 0 π 6 , or 30 ° π 4 , or 45 ° π 3 , or 60 ° π 2 , or 90 °
Cosine 1 3 2 2 2 1 2 0
Sine 0 1 2 2 2 3 2 1
Tangent 0 3 3 1 3 Undefined
Secant 1 2 3 3 2 2 Undefined
Cosecant Undefined 2 2 2 3 3 1
Cotangent Undefined 3 1 3 3 0

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask