<< Chapter < Page Chapter >> Page >

Given the polar equation for a conic, identify the type of conic, the directrix, and the eccentricity.

  1. Multiply the numerator and denominator by the reciprocal of the constant in the denominator to rewrite the equation in standard form.
  2. Identify the eccentricity e as the coefficient of the trigonometric function in the denominator.
  3. Compare e with 1 to determine the shape of the conic.
  4. Determine the directrix as x = p if cosine is in the denominator and y = p if sine is in the denominator. Set e p equal to the numerator in standard form to solve for x or y .

Identifying a conic given the polar form

For each of the following equations, identify the conic with focus at the origin, the directrix    , and the eccentricity    .

  1. r = 6 3 + 2   sin   θ
  2. r = 12 4 + 5   cos   θ
  3. r = 7 2 2   sin   θ

For each of the three conics, we will rewrite the equation in standard form. Standard form has a 1 as the constant in the denominator. Therefore, in all three parts, the first step will be to multiply the numerator and denominator by the reciprocal of the constant of the original equation, 1 c , where c is that constant.

  1. Multiply the numerator and denominator by 1 3 .
    r = 6 3 + 2 sin   θ ( 1 3 ) ( 1 3 ) = 6 ( 1 3 ) 3 ( 1 3 ) + 2 ( 1 3 ) sin   θ = 2 1 + 2 3   sin   θ

    Because sin   θ is in the denominator, the directrix is y = p . Comparing to standard form, note that e = 2 3 . Therefore, from the numerator,

          2 = e p       2 = 2 3 p ( 3 2 ) 2 = ( 3 2 ) 2 3 p       3 = p

    Since e < 1 , the conic is an ellipse    . The eccentricity is e = 2 3 and the directrix is y = 3.

  2. Multiply the numerator and denominator by 1 4 .
    r = 12 4 + 5   cos   θ ( 1 4 ) ( 1 4 ) r = 12 ( 1 4 ) 4 ( 1 4 ) + 5 ( 1 4 ) cos   θ r = 3 1 + 5 4   cos   θ

    Because  cos θ   is in the denominator, the directrix is x = p . Comparing to standard form, e = 5 4 . Therefore, from the numerator,

           3 = e p        3 = 5 4 p ( 4 5 ) 3 = ( 4 5 ) 5 4 p     12 5 = p

    Since e > 1 , the conic is a hyperbola    . The eccentricity is e = 5 4 and the directrix is x = 12 5 = 2.4.

  3. Multiply the numerator and denominator by 1 2 .
    r = 7 2 2   sin   θ ( 1 2 ) ( 1 2 ) r = 7 ( 1 2 ) 2 ( 1 2 ) 2 ( 1 2 )   sin   θ r = 7 2 1 sin   θ

    Because sine is in the denominator, the directrix is y = p . Comparing to standard form, e = 1. Therefore, from the numerator,

    7 2 = e p 7 2 = ( 1 ) p 7 2 = p

    Because e = 1 , the conic is a parabola    . The eccentricity is e = 1 and the directrix is y = 7 2 = −3.5.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Identify the conic with focus at the origin, the directrix, and the eccentricity for r = 2 3 cos   θ .

ellipse; e = 1 3 ; x = 2

Got questions? Get instant answers now!

Graphing the polar equations of conics

When graphing in Cartesian coordinates, each conic section has a unique equation. This is not the case when graphing in polar coordinates. We must use the eccentricity of a conic section to determine which type of curve to graph, and then determine its specific characteristics. The first step is to rewrite the conic in standard form as we have done in the previous example. In other words, we need to rewrite the equation so that the denominator begins with 1. This enables us to determine e and, therefore, the shape of the curve. The next step is to substitute values for θ and solve for r to plot a few key points. Setting θ equal to 0 , π 2 , π , and 3 π 2 provides the vertices so we can create a rough sketch of the graph.

Graphing a parabola in polar form

Graph r = 5 3 + 3   cos   θ .

First, we rewrite the conic in standard form by multiplying the numerator and denominator by the reciprocal of 3, which is 1 3 .

r = 5 3 + 3   cos   θ = 5 ( 1 3 ) 3 ( 1 3 ) + 3 ( 1 3 ) cos   θ r = 5 3 1 + cos   θ

Because e = 1 , we will graph a parabola    with a focus at the origin. The function has a   cos   θ , and there is an addition sign in the denominator, so the directrix is x = p .

5 3 = e p 5 3 = ( 1 ) p 5 3 = p

The directrix is x = 5 3 .

Plotting a few key points as in [link] will enable us to see the vertices. See [link] .

A B C D
θ 0 π 2 π 3 π 2
r = 5 3 + 3   cos   θ 5 6 0.83 5 3 1.67 undefined 5 3 1.67
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask