<< Chapter < Page Chapter >> Page >

Appendix

Important proofs and derivations

Product Rule

log a x y = log a x + log a y

Proof:

Let m = log a x and n = log a y .

Write in exponent form.

x = a m and y = a n .

Multiply.

x y = a m a n = a m + n

a m + n = x y log a ( x y ) = m + n = log a x + log b y

Change of Base Rule

log a b = log c b log c a log a b = 1 log b a

where x and y are positive, and a > 0 , a 1.

Proof:

Let x = log a b .

Write in exponent form.

a x = b

Take the log c of both sides.

log c a x = log c b x log c a = log c b x = log c b log c a log a b = log c b log a b

When c = b ,

log a b = log b b log b a = 1 log b a

Heron’s Formula

A = s ( s a ) ( s b ) ( s c )

where s = a + b + c 2

Proof:

Let a , b , and c be the sides of a triangle, and h be the height.

A triangle with sides labeled: a, b and c.  A line runs through the center of the triangle, bisecting the top angle; this line is labeled: h.

So s = a + b + c 2 .

We can further name the parts of the base in each triangle established by the height such that p + q = c .

A triangle with sides labeled: a, b, and c.  A line runs through the center of the triangle bisecting the angle at the top; this line is labeled: h. The two new line segments on the base of the triangle are labeled: p and q.

Using the Pythagorean Theorem, h 2 + p 2 = a 2 and h 2 + q 2 = b 2 .

Since q = c p , then q 2 = ( c p ) 2 . Expanding, we find that q 2 = c 2 2 c p + p 2 .

We can then add h 2 to each side of the equation to get h 2 + q 2 = h 2 + c 2 2 c p + p 2 .

Substitute this result into the equation h 2 + q 2 = b 2 yields b 2 = h 2 + c 2 2 c p + p 2 .

Then replacing h 2 + p 2 with a 2 gives b 2 = a 2 2 c p + c 2 .

Solve for p to get

p = a 2 + b 2 c 2 2 c

Since h 2 = a 2 p 2 , we get an expression in terms of a , b , and c .

h 2 = a 2 p 2 = ( a + p ) ( a p ) = [ a + ( a 2 + c 2 b 2 ) 2 c ] [ a ( a 2 + c 2 b 2 ) 2 c ] = ( 2 a c + a 2 + c 2 b 2 ) ( 2 a c a 2 c 2 + b 2 ) 4 c 2 = ( ( a + c ) 2 b 2 ) ( b 2 ( a c ) 2 ) 4 c 2 = ( a + b + c ) ( a + c b ) ( b + a c ) ( b a + c ) 4 c 2 = ( a + b + c ) ( a + b + c ) ( a b + c ) ( a + b c ) 4 c 2 = 2 s ( 2 s a ) ( 2 s b ) ( 2 s c ) 4 c 2

Therefore,

h 2 = 4 s ( s a ) ( s b ) ( s c ) c 2 h = 2 s ( s a ) ( s b ) ( s c ) c

And since A = 1 2 c h , then

A = 1 2 c 2 s ( s a ) ( s b ) ( s c ) c = s ( s a ) ( s b ) ( s c )

Properties of the Dot Product

u · v = v · u

Proof:

u · v = u 1 , u 2 , ... u n · v 1 , v 2 , ... v n = u 1 v 1 + u 2 v 2 + ... + u n v n = v 1 u 1 + v 2 u 2 + ... + v n v n = v 1 , v 2 , ... v n · u 1 , u 2 , ... u n = v · u

u · ( v + w ) = u · v + u · w

Proof:

u · ( v + w ) = u 1 , u 2 , ... u n · ( v 1 , v 2 , ... v n + w 1 , w 2 , ... w n ) = u 1 , u 2 , ... u n · v 1 + w 1 , v 2 + w 2 , ... v n + w n = u 1 ( v 1 + w 1 ) , u 2 ( v 2 + w 2 ) , ... u n ( v n + w n ) = u 1 v 1 + u 1 w 1 , u 2 v 2 + u 2 w 2 , ... u n v n + u n w n = u 1 v 1 , u 2 v 2 , ... , u n v n + u 1 w 1 , u 2 w 2 , ... , u n w n = u 1 , u 2 , ... u n · v 1 , v 2 , ... v n + u 1 , u 2 , ... u n · w 1 , w 2 , ... w n = u · v + u · w

u · u = | u | 2

Proof:

u · u = u 1 , u 2 , ... u n · u 1 , u 2 , ... u n = u 1 u 1 + u 2 u 2 + ... + u n u n = u 1 2 + u 2 2 + ... + u n 2 = | u 1 , u 2 , ... u n | 2 = v · u

Standard Form of the Ellipse centered at the Origin

1 = x 2 a 2 + y 2 b 2

Derivation

An ellipse consists of all the points for which the sum of distances from two foci is constant:

( x ( c ) ) 2 + ( y 0 ) 2 + ( x c ) 2 + ( y 0 ) 2 = constant

An ellipse centered at the origin on an x, y-coordinate plane.  Points C1 and C2 are plotted at the points (0, b) and (0, -b) respectively; these points appear on the ellipse.  Points V1 and V2 are plotted at the points (-a, 0) and (a, 0) respectively; these points appear on the ellipse.  Points F1 and F2 are plotted at the points (-c, 0) and (c, 0) respectively; these points appear on the x-axis, but not the ellipse. The point (x, y) appears on the ellipse in the first quadrant.  Dotted lines extend from F1 and F2 to the point (x, y).

Consider a vertex.

An ellipse centered at the origin.  The points C1 and C2 are plotted at the points (0, b) and (0, -b) respectively; these points are on the ellipse.  The points V1 and V2 are plotted at the points (-a, 0) and (a, 0) respectively; these points are on the ellipse.  The points F1 and F2 are plotted at the points (-c, 0) and (c, 0) respectively; these points are on the x-axis and not on the ellipse.  A line extends from the point F1 to a point (x, y) which is at the point (a, 0).  A line extends from the point F2 to the point (x, y) as well.

Then, ( x ( c ) ) 2 + ( y 0 ) 2 + ( x c ) 2 + ( y 0 ) 2 = 2 a

Consider a covertex.

An ellipse centered at the origin.  The points C1 and C2 are plotted at the points (0, b) and (0, -b) respectively; these points are on the ellipse.  The points V1 and V2 are plotted at the points (-a, 0) and (a, 0) respectively; these points are on the ellipse.  The points F1 and F2 are plotted at the points (-c, 0) and (c, 0) respectively; these points are on the x-axis and not on the ellipse.  There is a point (x, y) which is plotted at (0, b). A line extends from the origin to the point (c, 0), this line is labeled: c.  A line extends from the origin to the point (x, y), this line is labeled: b.  A line extends from the point (c, 0) to the point (x, y); this line is labeled: (1/2)(2a)=a.  A dotted line extends from the point (-c, 0) to the point (x, y); this line is labeled: (1/2)(2a)=a.

Then b 2 + c 2 = a 2 .

( x ( c ) ) 2 + ( y 0 ) 2 + ( x c ) 2 + ( y 0 ) 2 = 2 a ( x + c ) 2 + y 2 = 2 a ( x c ) 2 + y 2 ( x + c ) 2 + y 2 = ( 2 a ( x c ) 2 + y 2 ) 2 x 2 + 2 c x + c 2 + y 2 = 4 a 2 4 a ( x c ) 2 + y 2 + ( x c ) 2 + y 2 x 2 + 2 c x + c 2 + y 2 = 4 a 2 4 a ( x c ) 2 + y 2 + x 2 2 c x + y 2 2 c x = 4 a 2 4 a ( x c ) 2 + y 2 2 c x 4 c x 4 a 2 = 4 a ( x c ) 2 + y 2 1 4 a ( 4 c x 4 a 2 ) = ( x c ) 2 + y 2 a c a x = ( x c ) 2 + y 2 a 2 2 x c + c 2 a 2 x 2 = ( x c ) 2 + y 2 a 2 2 x c + c 2 a 2 x 2 = x 2 2 x c + c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 + c 2 a 2 x 2 = x 2 + c 2 + y 2 a 2 c 2 = x 2 c 2 a 2 x 2 + y 2 a 2 c 2 = x 2 ( 1 c 2 a 2 ) + y 2

Let 1 = a 2 a 2 .

a 2 c 2 = x 2 ( a 2 c 2 a 2 ) + y 2 1 = x 2 a 2 + y 2 a 2 c 2

Because b 2 + c 2 = a 2 , then b 2 = a 2 c 2 .

1 = x 2 a 2 + y 2 a 2 c 2 1 = x 2 a 2 + y 2 b 2

Standard Form of the Hyperbola

1 = x 2 a 2 y 2 b 2

Derivation

A hyperbola is the set of all points in a plane such that the absolute value of the difference of the distances between two fixed points is constant.

Side-by-side graphs of hyperbole.  In Diagram 1: The foci F’ and F are labeled and can be found a little in front of the opening of the hyperbola.  A point P at (x,y) on the right curve is labeled.  A line extends from the F’ focus to the point P labeled: D1.  A line extends from the F focus to the point P labeled: D2.  In Diagram 2:  The foci F’ and F are labeled and can be found a little in front of the opening of the hyperbola.  A point V is labeled at the vertex of the right hyperbola.  A line extends from the F’ focus to the point V labeled: D1.  A line extends from the F focus to the point V labeled: D2.

Diagram 1: The difference of the distances from Point P to the foci is constant:

( x ( c ) ) 2 + ( y 0 ) 2 ( x c ) 2 + ( y 0 ) 2 = constant

Diagram 2: When the point is a vertex, the difference is 2 a .

( x ( c ) ) 2 + ( y 0 ) 2 ( x c ) 2 + ( y 0 ) 2 = 2 a

( x ( c ) ) 2 + ( y 0 ) 2 ( x c ) 2 + ( y 0 ) 2 = 2 a ( x + c ) 2 + y 2 ( x c ) 2 + y 2 = 2 a ( x + c ) 2 + y 2 = 2 a + ( x c ) 2 + y 2 ( x + c ) 2 + y 2 = ( 2 a + ( x c ) 2 + y 2 ) x 2 + 2 c x + c 2 + y 2 = 4 a 2 + 4 a ( x c ) 2 + y 2 x 2 + 2 c x + c 2 + y 2 = 4 a 2 + 4 a ( x c ) 2 + y 2 + x 2 2 c x + y 2 2 c x = 4 a 2 + 4 a ( x c ) 2 + y 2 2 c x 4 c x 4 a 2 = 4 a ( x c ) 2 + y 2 c x a 2 = a ( x c ) 2 + y 2 ( c x a 2 ) 2 = a 2 ( ( x c ) 2 + y 2 ) c 2 x 2 2 a 2 c 2 x 2 + a 4 = a 2 x 2 2 a 2 c 2 x 2 + a 2 c 2 + a 2 y 2 c 2 x 2 + a 4 = a 2 x 2 + a 2 c 2 + a 2 y 2 a 4 a 2 c 2 = a 2 x 2 c 2 x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( a 2 c 2 ) x 2 + a 2 y 2 a 2 ( a 2 c 2 ) = ( c 2 a 2 ) x 2 a 2 y 2

Define b as a positive number such that b 2 = c 2 a 2 .

a 2 b 2 = b 2 x 2 a 2 y 2 a 2 b 2 a 2 b 2 = b 2 x 2 a 2 b 2 a 2 y 2 a 2 b 2 1 = x 2 a 2 y 2 b 2

Trigonometric identities

Pythagorean Identity cos 2 t + sin 2 t = 1 1 + tan 2 t = sec 2 t 1 + cot 2 t = csc 2 t
Even-Odd Identities cos ( t ) = c o s t sec ( t ) = sec t sin ( t ) = sin t tan ( t ) = tan t csc ( t ) = csc t cot ( t ) = cot t
Cofunction Identities cos t = sin ( π 2 t ) sin t = cos ( π 2 t ) tan t = cot ( π 2 t ) cot t = tan ( π 2 t ) sec t = csc ( π 2 t ) csc t = sec ( π 2 t )
Fundamental Identities tan t = sin t cos t sec t = 1 cos t csc t = 1 sin t c o t t = 1 tan t = cos t sin t
Sum and Difference Identities cos ( α + β ) = cos α cos β sin α sin β cos ( α β ) = cos α cos β + sin α sin β sin ( α + β ) = sin α cos β + cos α sin β sin ( α β ) = sin α cos β cos α sin β tan ( α + β ) = tan α + tan β 1 tan α tan β tan ( α β ) = tan α tan β 1 + tan α tan β
Double-Angle Formulas sin ( 2 θ ) = 2 sin θ cos θ cos ( 2 θ ) = cos 2 θ sin 2 θ cos ( 2 θ ) = 1 2 sin 2 θ cos ( 2 θ ) = 2 cos 2 θ 1 tan ( 2 θ ) = 2 tan θ 1 tan 2 θ
Half-Angle Formulas sin α 2 = ± 1 cos α 2 cos α 2 = ± 1 + cos α 2 tan α 2 = ± 1 cos α 1 + cos α tan α 2 = sin α 1 + cos α tan α 2 = 1 cos α sin α
Reduction Formulas sin 2 θ = 1 cos ( 2 θ ) 2 cos 2 θ = 1 + cos ( 2 θ ) 2 tan 2 θ = 1 cos ( 2 θ ) 1 + cos ( 2 θ )
Product-to-Sum Formulas cos α cos β = 1 2 [ cos ( α β ) + cos ( α + β ) ] sin α cos β = 1 2 [ sin ( α + β ) + sin ( α β ) ] sin α sin β = 1 2 [ cos ( α β ) cos ( α + β ) ] cos α sin β = 1 2 [ sin ( α + β ) sin ( α β ) ]
Sum-to-Product Formulas sin α + sin β = 2 sin ( α + β 2 ) cos ( α β 2 ) sin α sin β = 2 sin ( α β 2 ) cos ( α + β 2 ) cos α cos β = 2 sin ( α + β 2 ) sin ( α β 2 ) cos α + cos β = 2 cos ( α + β 2 ) cos ( α β 2 )
Law of Sines sin α a = sin β b = sin γ c a sin α = b sin β = c sin γ
Law of Cosines a 2 = b 2 + c 2 2 b c cos α b 2 = a 2 + c 2 2 a c cos β c 2 = a 2 + b 2 2 a b cos γ

Toolkit functions

Three graphs side-by-side. From left to right, graph of the identify function, square function, and square root function. All three graphs extend from -4 to 4 on each axis.
Three graphs side-by-side. From left to right, graph of the cubic function, cube root function, and reciprocal function. All three graphs extend from -4 to 4 on each axis.
Three graphs side-by-side. From left to right, graph of the absolute value function, exponential function, and natural logarithm function. All three graphs extend from -4 to 4 on each axis.

Trigonometric functions

Unit Circle

Graph of unit circle with angles in degrees, angles in radians, and points along the circle inscribed.
Angle 0 π 6 , or 30 ° π 4 , or 45 ° π 3 , or 60 ° π 2 , or 90 °
Cosine 1 3 2 2 2 1 2 0
Sine 0 1 2 2 2 3 2 1
Tangent 0 3 3 1 3 Undefined
Secant 1 2 3 3 2 2 Undefined
Cosecant Undefined 2 2 2 3 3 1
Cotangent Undefined 3 1 3 3 0

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask