<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Graph variations of  y=sin( x )  and  y=cos( x ).
  • Use phase shifts of sine and cosine curves.
A photo of a rainbow colored beam of light stretching across the floor.
Light can be separated into colors because of its wavelike properties. (credit: "wonderferret"/ Flickr)

White light, such as the light from the sun, is not actually white at all. Instead, it is a composition of all the colors of the rainbow in the form of waves. The individual colors can be seen only when white light passes through an optical prism that separates the waves according to their wavelengths to form a rainbow.

Light waves can be represented graphically by the sine function. In the chapter on Trigonometric Functions , we examined trigonometric functions such as the sine function. In this section, we will interpret and create graphs of sine and cosine functions.

Graphing sine and cosine functions

Recall that the sine and cosine functions relate real number values to the x - and y -coordinates of a point on the unit circle. So what do they look like on a graph on a coordinate plane? Let’s start with the sine function    . We can create a table of values and use them to sketch a graph. [link] lists some of the values for the sine function on a unit circle.

x 0 π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π
sin ( x ) 0 1 2 2 2 3 2 1 3 2 2 2 1 2 0

Plotting the points from the table and continuing along the x -axis gives the shape of the sine function. See [link] .

A graph of sin(x). Local maximum at (pi/2, 1). Local minimum at (3pi/2, -1). Period of 2pi.
The sine function

Notice how the sine values are positive between 0 and π , which correspond to the values of the sine function in quadrants I and II on the unit circle, and the sine values are negative between π and 2 π , which correspond to the values of the sine function in quadrants III and IV on the unit circle. See [link] .

A side-by-side graph of a unit circle and a graph of sin(x). The two graphs show the equivalence of the coordinates.
Plotting values of the sine function

Now let’s take a similar look at the cosine function    . Again, we can create a table of values and use them to sketch a graph. [link] lists some of the values for the cosine function on a unit circle.

x 0 π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π
cos ( x ) 1 3 2 2 2 1 2 0 1 2 2 2 3 2 1

As with the sine function, we can plots points to create a graph of the cosine function as in [link] .

A graph of cos(x). Local maxima at (0,1) and (2pi, 1). Local minimum at (pi, -1). Period of 2pi.
The cosine function

Because we can evaluate the sine and cosine of any real number, both of these functions are defined for all real numbers. By thinking of the sine and cosine values as coordinates of points on a unit circle, it becomes clear that the range of both functions must be the interval [ 1 , 1 ] .

In both graphs, the shape of the graph repeats after 2 π , which means the functions are periodic with a period of 2 π . A periodic function    is a function for which a specific horizontal shift    , P , results in a function equal to the original function: f ( x + P ) = f ( x ) for all values of x in the domain of f . When this occurs, we call the smallest such horizontal shift with P > 0 the period    of the function. [link] shows several periods of the sine and cosine functions.

Side-by-side graphs of sin(x) and cos(x). Graphs show period lengths for both functions, which is 2pi.

Looking again at the sine and cosine functions on a domain centered at the y -axis helps reveal symmetries. As we can see in [link] , the sine function    is symmetric about the origin. Recall from The Other Trigonometric Functions that we determined from the unit circle that the sine function is an odd function because sin ( x ) = sin x . Now we can clearly see this property from the graph.

Questions & Answers

Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Excusme but what are you wrot?
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask