<< Chapter < Page Chapter >> Page >

An interesting distinction is the one between quality attributes discernable at run-time (performance, security, availability, functionality, usability), those not discernable at run-time (modifiability, portability, reusability, integrability, and testability), and those related to the architecture’s intrinsic qualities (conceptual integrity, correctness, and completeness, buildability).

Quality analysis and evaluation techniques

Various tools and techniques can help ensure a software design’s quality.

  • Software design reviews: informal or semiformal, often group-based, techniques to verify and ensure the quality of design artifacts.
  • Static analysis: formal or semiformal static (non-executable) analysis that can be used to evaluate a design (for example, fault-tree analysis or automated cross-checking).
  • Simulation and prototyping: dynamic techniques to evaluate a design (for example, performance simulation or feasibility prototype.

Measures

Measures can be used to assess or to quantitatively estimate various aspects of a software design’s size, structure, or quality. Most measures that have been proposed generally depend on the approach used for producing the design. These measures are classified in two broad categories:

  • Function-oriented (structured) design measures: the design’s structure, obtained mostly through functional decomposition; generally represented as a structure chart (sometimes called a hierarchical diagram) on which various measures can be computed.
  • Object-oriented design measures: the design’s overall structure is often represented as a class diagram, on which various measures can be computed. Measures on the properties of each class’s internal content can also be computed.

Software design notations

Many notations and languages exist to represent software design artifacts. Some are used mainly to describe a design’s structural organization, others to represent software behavior. Certain notations are used mostly during architectural design and others mainly during detailed design, although some notations can be used in both steps. In addition, some notations are used mostly in the context of specific. Here, they are categorized into notations for describing the structural (static) view vs. the behavioral (dynamic) view.

Structural descriptions (static view)

The following notations, mostly (but not always) graphical, describe and represent the structural aspects of a software design - that is, they describe the major components and how they are interconnected (static view):

  • Architecture description languages (ADLs): textual, often formal, languages used to describe a software architecture in terms of components and connectors.
  • Class and object diagrams: used to represent a set of classes (and objects) and their interrelationships.
  • Component diagrams: used to represent a set of components (“physical and replaceable part[s] of a system that [conform]to and [provide] the realization of a set of interfaces”) and their interrelationships.
  • Class responsibility collaborator cards (CRCs): used to denote the names of components (class), their responsibilities, and their collaborating components’ names.
  • Deployment diagrams: used to represent a set of (physical) nodes and their interrelationships, and, thus, to model the physical aspects of a system.
  • Entity-relationship diagrams (ERDs): used to represent conceptual models of data stored in information systems.
  • Interface description languages (IDLs): programming-like languages used to define the interfaces (names and types of exported operations) of software components.
  • Jackson structure diagrams: used to describe the data structures in terms of sequence, selection, and iteration.
  • Structure charts: used to describe the calling structure of programs (which module calls, and is called by, which other module).

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Software engineering. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10790/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Software engineering' conversation and receive update notifications?

Ask