<< Chapter < Page
  Software engineering     Page 2 / 15
Chapter >> Page >

Regardless of the limitations, testing is an integral part in software development. It is broadly deployed in every phase in the software development cycle. Typically, more than 50% percent of the development time is spent in testing. Testing is usually performed for the following purposes:

To improve quality

As computers and software are used in critical applications, the outcome of a bug can be severe. Bugs can cause huge losses. Bugs in critical systems have caused airplane crashes, allowed space shuttle missions to go awry, halted trading on the stock market, and worse. Bugs can kill. Bugs can cause disasters. In a computerized embedded world, the quality and reliability of software is a matter of life and death.

Quality means the conformance to the specified design requirement. Being correct, the minimum requirement of quality, means performing as required under specified circumstances. Debugging, a narrow view of software testing, is performed heavily to find out design defects by the programmer. The imperfection of human nature makes it almost impossible to make a moderately complex program correct the first time. Finding the problems and get them fixed, is the purpose of debugging in programming phase.

For verification&Validation (v&V)

An important purpose of testing is verification and validation. Testing can serve as metrics. It is heavily used as a tool in the V&V process. Testers can make claims based on interpretations of the testing results, which either the product works under certain situations, or it does not work. We can also compare the quality among different products under the same specification, based on results from the same test.

We can not test quality directly, but we can test related factors to make quality visible. Quality has three sets of factors: functionality, engineering, and adaptability. These three sets of factors can be thought of as dimensions in the software quality space. Each dimension may be broken down into its component factors and considerations at successively lower levels of detail. Table 1 illustrates some of the most frequently cited quality considerations.

Functionality(exterior quality) Engineering(interior quality) Adaptability(future quality)
Correctness Efficiency Flexibility
Reliability Testability Reusability
Usability Documentation Maintainability
Integrity Structure
Table 1.  Typical Software Quality Factors 

Good testing provides measures for all relevant factors. The importance of any particular factor varies from application to application. Any system where human lives are at stake must place extreme emphasis on  reliability and integrity. In the typical business system usability and maintainability are the key factors, while for a one-time scientific program neither may be significant. Our testing, to be fully effective, must be geared to measuring each relevant factor and thus forcing quality to become tangible and visible.

Tests with the purpose of validating the product works are named clean tests, or positive tests. The drawbacks are that it can only validate that the software works for the specified test cases. A finite number of tests can not validate that the software works for all situations. On the contrary, only one failed test is sufficient enough to show that the software does not work. Dirty tests, or negative tests, refers to the tests aiming at breaking the software, or showing that it does not work. A piece of software must have sufficient exception handling capabilities to survive a significant level of dirty tests.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Software engineering. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10790/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Software engineering' conversation and receive update notifications?

Ask