<< Chapter < Page Chapter >> Page >

Finding instantaneous rates of change

Many applications of the derivative involve determining the rate of change at a given instant of a function with the independent variable time—which is why the term instantaneous is used. Consider the height of a ball tossed upward with an initial velocity of 64 feet per second, given by s ( t ) = −16 t 2 + 64 t + 6 , where t is measured in seconds and s ( t ) is measured in feet. We know the path is that of a parabola. The derivative will tell us how the height is changing at any given point in time. The height of the ball is shown in [link] as a function of time. In physics, we call this the “ s - t graph.”

Graph of a negative parabola with a vertex at (2, 70) and two points at (1, 55) and (3, 55).

Finding the instantaneous rate of change

Using the function above, s ( t ) = −16 t 2 + 64 t + 6 , what is the instantaneous velocity of the ball at 1 second and 3 seconds into its flight?

The velocity at t = 1 and t = 3 is the instantaneous rate of change of distance per time, or velocity. Notice that the initial height is 6 feet. To find the instantaneous velocity, we find the derivative    and evaluate it at t = 1 and t = 3 :

f ( a ) = lim h 0 f ( a + h ) f ( a ) h          = lim h 0 16 ( t + h ) 2 + 64 ( t + h ) + 6 ( 16 t 2 + 64 t + 6 ) h Substitute  s ( t + h )  and  s ( t ) .          = lim h 0 16 t 2 32 h t h 2 + 64 t + 64 h + 6 + 16 t 2 64 t 6 h Distribute .          = lim h 0 32 h t h 2 + 64 h h Simplify .          = lim h 0 h ( 32 t h + 64 ) h Factor the numerator .          = lim h 0 32 t h + 64 Cancel out the common factor  h . s ( t ) = 32 t + 64 Evaluate the limit by letting  h = 0.

For any value of t , s ( t ) tells us the velocity at that value of t .

Evaluate t = 1 and t = 3.

s ( 1 ) = −32 ( 1 ) + 64 = 32 s ( 3 ) = −32 ( 3 ) + 64 = −32

The velocity of the ball after 1 second is 32 feet per second, as it is on the way up.

The velocity of the ball after 3 seconds is −32 feet per second, as it is on the way down.

Got questions? Get instant answers now!
Got questions? Get instant answers now!

The position of the ball is given by s ( t ) = −16 t 2 + 64 t + 6. What is its velocity 2 seconds into flight?

0

Got questions? Get instant answers now!

Using graphs to find instantaneous rates of change

We can estimate an instantaneous rate of change at x = a by observing the slope of the curve of the function f ( x ) at x = a . We do this by drawing a line tangent to the function at x = a and finding its slope.

Given a graph of a function f ( x ) , find the instantaneous rate of change of the function at x = a .

  1. Locate x = a on the graph of the function f ( x ) .
  2. Draw a tangent line, a line that goes through x = a at a and at no other point in that section of the curve. Extend the line far enough to calculate its slope as
    change in  y change in  x .

Estimating the derivative at a point on the graph of a function

From the graph of the function y = f ( x ) presented in [link] , estimate each of the following:

  1. f ( 0 )
  2. f ( 2 )
  3. f ' ( 0 )
  4. f ' ( 2 )

Graph of an odd function with multiplicity of two and with two points at (0, 1) and (2, 1).

To find the functional value, f ( a ) , find the y -coordinate at x = a .

To find the derivative    at x = a , f ( a ) , draw a tangent line at x = a , and estimate the slope of that tangent line. See [link] .

Graph of the previous function with tangent lines at the two points (0, 1) and (2, 1). The graph demonstrates the slopes of the tangent lines. The slope of the tangent line at x = 0 is 0, and the slope of the tangent line at x = 2 is 4.
  1. f ( 0 ) is the y -coordinate at x = 0. The point has coordinates ( 0 , 1 ) , thus f ( 0 ) = 1.
  2. f ( 2 ) is the y -coordinate at x = 2. The point has coordinates ( 2 , 1 ) , thus f ( 2 ) = 1.
  3. f ( 0 ) is found by estimating the slope of the tangent line to the curve at x = 0. The tangent line to the curve at x = 0 appears horizontal. Horizontal lines have a slope of 0, thus f ( 0 ) = 0.
  4. f ( 2 ) is found by estimating the slope of the tangent line to the curve at x = 2. Observe the path of the tangent line to the curve at x = 2. As the x value moves one unit to the right, the y value moves up four units to another point on the line. Thus, the slope is 4, so f ( 2 ) = 4.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask