<< Chapter < Page Chapter >> Page >
A sample plot of I-V data taken with test setup shown in [link] and [link] .

One improvement that can be made to the above system is to replace the floodlight with a simple slide projector. The floodlight will typically have a spectrum very heavily weighted in the red and infrared and will be deficient in the shorter wavelengths. Though still not a perfect match to the solar spectrum, the slide projector does at least have more output at the shorter wavelengths; at the same time it will have less IR output compared to the floodlight and the combination should give a somewhat more representative response. A typical set up is shown in [link] .

Test setup using a slide projector.

The mirror in [link] serves two purposes. First, it turns the beam so the test object can be laid flat a measurement bed and second it serves to collimate and concentrate the beam by focusing it on a smaller area, giving a better approximation of terrestrial solar intensity over a range of intensities such as AM2 (air mass 2) through AM0 ( [link] ). An estimate of the intensity can be made using a calibrated silicon solar cell of the sort that can be purchased online from any of several scientific hobby shops such as Edmunds Scientific. While still far from enabling a quantitative measurement of device output, the technique will at least provide indications within a ballpark range of actual cell efficiency.

Solar irradiance spectrum at AM 0 (yellow) and AM2 (red). Adapted from M. Pagliaro, G. Palmisano, and R. Ciriminna, Flexible Solar Cells, John Wiley, New York (2008).

[link] shows a measurement made with the test device placed at a distance from the mirror for which the intensity was previously determined to be equivalent to AM1 solar intensity, or 1000 watts per square meter. Since the beam passes through the projector lens and reflects from the second surface of the slightly concave mirror, there is essentially no UV light left in the beam that could be harmful to the naked eye. Still, if this technique is used, it is recommended that observations be made through a piece of ordinary glass such as eyeglasses or even a small glass shield inserted for that purpose. The blue area in the figure represents the largest rectangle that can be drawn under the curve and gives the maximum output power of the cell, which is simply the product of the current and voltage at maximum power.

[link] is a plot of current density, obtained by dividing the current from the device by its area. It is common to normalize the output is this manner.

If the power density of the incident light (P 0 ) is known in W/cm 2 , the device efficiency can be obtained by dividing the maximum power (as determined from I m and V m ) by the incident power density times the area of the cell (A cell ), [link] .

The picture shows the relative brightness of the light beam at an approximate intensity of 1000 W/m 2 . A small concave mirror serves to both turn the beam and to concentrate it a small amount to reach that level.

Measurement of the photoconductivity of experimental photovoltaic materials

In many cases it is beneficial to determine the photoconductivity of a new material prior to cell fabrication. This allows for the rapid screening of materials or synthesis variable of a single material even before issues of cell design and construction are considered.

[link] shows the circuit diagram of a simple photoconductivity test made with a slightly different set up compared to that shown above. In this case a voltage is placed across the sample after it has been connected to a resistor placed in series with the sample. A simple 9 V battery secured with a battery holder or a small ac to dc power converter can be used to supply the voltage. The sample and resistor sit inside a small box with an open top.

Circuit diagram for simple photoconductance test.

The voltage across (in this case) the 10 ohm resister was measured with a shutter held over the sample (a simple piece of cardboard sitting on the top of the box) and with the shutter removed. The difference in voltage is a direct indication of the change in the photoconductance of the sample and again is a very quick and simple test to see if the material being developed does indeed have a photoresponse of some sort without having to make a full device structure. Adjusting the position of the light source so that the incident light power density at the sample surface is 200 or 500 or 1000 W/m 2 enables an approximate numerical estimate of the photocurrent that was generated and again can help guide the development of new materials for solar cell applications. The results from such a measurement are shown in [link] for a sample of carbon nanotubes (CNT) coated with CdSe by liquid phase deposition (LPD).

Photoresponse of a carbon nanotube (CNT) carpet coated with CdSe by liquid phase deposited.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Physical methods in chemistry and nano science. OpenStax CNX. May 05, 2015 Download for free at http://legacy.cnx.org/content/col10699/1.21
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physical methods in chemistry and nano science' conversation and receive update notifications?

Ask