<< Chapter < Page Chapter >> Page >

Calculating resistor diameter: a headlight filament

A car headlight filament is made of tungsten and has a cold resistance of 0 . 350 Ω size 12{0 "." "350" %OMEGA } {} . If the filament is a cylinder 4.00 cm long (it may be coiled to save space), what is its diameter?

Strategy

We can rearrange the equation R = ρL A size 12{R = { {ρL} over {A} } } {} to find the cross-sectional area A size 12{A} {} of the filament from the given information. Then its diameter can be found by assuming it has a circular cross-section.

Solution

The cross-sectional area, found by rearranging the expression for the resistance of a cylinder given in R = ρL A size 12{R = { {ρL} over {A} } } {} , is

A = ρL R . size 12{A = { {ρL} over {R} } "."} {}

Substituting the given values, and taking ρ size 12{ρ} {} from [link] , yields

A = ( 5.6 × 10 –8 Ω m ) ( 4.00 × 10 –2 m ) 0.350 Ω = 6.40 × 10 –9 m 2 .

The area of a circle is related to its diameter D size 12{D} {} by

A = πD 2 4 . size 12{A = { {πD rSup { size 8{2} } } over {4} } "."} {}

Solving for the diameter D size 12{D} {} , and substituting the value found for A size 12{A} {} , gives

D = 2 A p 1 2 = 2 6.40 × 10 –9 m 2 3.14 1 2 = 9.0 × 10 –5 m . alignl { stack { size 12{D =" 2" left ( { {A} over {p} } right ) rSup { size 8{ { {1} over {2} } } } =" 2" left ( { {6 "." "40"´"10" rSup { size 8{ +- 9} } " m" rSup { size 8{2} } } over {3 "." "14"} } right ) rSup { size 8{ { {1} over {2} } } } } {} #=" 9" "." 0´"10" rSup { size 8{ +- 5} } " m" "." {} } } {}

Discussion

The diameter is just under a tenth of a millimeter. It is quoted to only two digits, because ρ size 12{ρ} {} is known to only two digits.

Got questions? Get instant answers now!

Temperature variation of resistance

The resistivity of all materials depends on temperature. Some even become superconductors (zero resistivity) at very low temperatures. (See [link] .) Conversely, the resistivity of conductors increases with increasing temperature. Since the atoms vibrate more rapidly and over larger distances at higher temperatures, the electrons moving through a metal make more collisions, effectively making the resistivity higher. Over relatively small temperature changes (about 100º C size 12{"100"°C} {} or less), resistivity ρ size 12{ρ} {} varies with temperature change Δ T size 12{DT} {} as expressed in the following equation

ρ = ρ 0 ( 1 + α Δ T ) , size 12{ρ = ρ rSub { size 8{0} } \( "1 "+ αΔT \) ","} {}

where ρ 0 size 12{ρ rSub { size 8{0} } } {} is the original resistivity and α size 12{α} {} is the temperature coefficient of resistivity    . (See the values of α size 12{α} {} in [link] below.) For larger temperature changes, α size 12{α} {} may vary or a nonlinear equation may be needed to find ρ size 12{ρ} {} . Note that α size 12{α} {} is positive for metals, meaning their resistivity increases with temperature. Some alloys have been developed specifically to have a small temperature dependence. Manganin (which is made of copper, manganese and nickel), for example, has α size 12{α} {} close to zero (to three digits on the scale in [link] ), and so its resistivity varies only slightly with temperature. This is useful for making a temperature-independent resistance standard, for example.

A graph for variation of resistance R with temperature T for a mercury sample is shown. The temperature T is plotted along the x axis and is measured in Kelvin, and the resistance R is plotted along the y axis and is measured in ohms. The curve starts at x equals zero and y equals zero, and coincides with the X axis until the value of temperature is four point two Kelvin, known as the critical temperature T sub c. At temperature T sub c, the curve shows a vertical rise, represented by a dotted line, until the resistance is about zero point one one ohms. After this temperature the resistance shows a nearly linear increase with temperature T.
The resistance of a sample of mercury is zero at very low temperatures—it is a superconductor up to about 4.2 K. Above that critical temperature, its resistance makes a sudden jump and then increases nearly linearly with temperature.
Tempature coefficients of resistivity α size 12{α} {}
Material Coefficient α (1/°C) Values at 20°C.
Conductors
Silver 3 . 8 × 10 3 size 12{3 "." 8 times "10" rSup { size 8{ - 3} } } {}
Copper 3 . 9 × 10 3 size 12{3 "." 9 times "10" rSup { size 8{ - 3} } } {}
Gold 3 . 4 × 10 3 size 12{3 "." 4 times "10" rSup { size 8{ - 3} } } {}
Aluminum 3 . 9 × 10 3 size 12{3 "." 9 times "10" rSup { size 8{ - 3} } } {}
Tungsten 4 . 5 × 10 3 size 12{4 "." 5 times "10" rSup { size 8{ - 3} } } {}
Iron 5 . 0 × 10 3 size 12{5 "." 0 times "10" rSup { size 8{ - 3} } } {}
Platinum 3 . 93 × 10 3 size 12{3 "." "93" times "10" rSup { size 8{ - 3} } } {}
Lead 3 . 9 × 10 3 size 12{3 "." 9 times "10" rSup { size 8{ - 3} } } {}
Manganin (Cu, Mn, Ni alloy) 0 . 000 × 10 3 size 12{0 "." "000" times "10" rSup { size 8{ - 3} } } {}
Constantan (Cu, Ni alloy) 0 . 002 × 10 3 size 12{0 "." "002" times "10" rSup { size 8{ - 3} } } {}
Mercury 0 . 89 × 10 3 size 12{0 "." "89" times "10" rSup { size 8{ - 3} } } {}
Nichrome (Ni, Fe, Cr alloy) 0 . 4 × 10 3 size 12{0 "." 4 times "10" rSup { size 8{ - 3} } } {}
Semiconductors
Carbon (pure) 0 . 5 × 10 3 size 12{ - 0 "." 5 times "10" rSup { size 8{ - 3} } } {}
Germanium (pure) 50 × 10 3 size 12{ - "50" times "10" rSup { size 8{ - 3} } } {}
Silicon (pure) 70 × 10 3 size 12{ - "70" times "10" rSup { size 8{ - 3} } } {}

Note also that α size 12{α} {} is negative for the semiconductors listed in [link] , meaning that their resistivity decreases with increasing temperature. They become better conductors at higher temperature, because increased thermal agitation increases the number of free charges available to carry current. This property of decreasing ρ size 12{ρ} {} with temperature is also related to the type and amount of impurities present in the semiconductors.

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask