<< Chapter < Page Chapter >> Page >

Entropy increases in a coin toss

Suppose you toss 100 coins starting with 60 heads and 40 tails, and you get the most likely result, 50 heads and 50 tails. What is the change in entropy?

Strategy

Noting that the number of microstates is labeled W size 12{W} {} in [link] for the 100-coin toss, we can use Δ S = S f S i = k ln W f - k ln W i size 12{DS=S rSub { size 8{f} } -S rSub { size 8{i} } =k" ln"W rSub { size 8{f} } +- k"ln"W rSub { size 8{i} } } {} to calculate the change in entropy.

Solution

The change in entropy is

Δ S = S f S i = k ln W f k ln W i , size 12{DS=S rSub { size 8{f} } -S rSub { size 8{i} } =k" ln"W rSub { size 8{f} } +- k"ln"W rSub { size 8{i} } } {}

where the subscript i stands for the initial 60 heads and 40 tails state, and the subscript f for the final 50 heads and 50 tails state. Substituting the values for W size 12{W} {} from [link] gives

Δ S = ( 1 . 38 × 10 23 J/K ) [ ln ( 1 . 0 × 10 29 ) ln ( 1 . 4 × 10 28 ) ] = 2.7 × 10 23 J/K alignl { stack { size 12{DS= \( 1 "." "38"´"10" rSup { size 8{-"23"} } " J/K" \) \[ "ln" \( 1 "." 0´"10" rSup { size 8{"29"} } \) +- "ln " \( 1 "." 4´"10" rSup { size 8{"28"} } \) \] } {} #" =2" "." 7´"10" rSup { size 8{ +- "23"} } " J/K" {} } } {}

Discussion

This increase in entropy means we have moved to a less orderly situation. It is not impossible for further tosses to produce the initial state of 60 heads and 40 tails, but it is less likely. There is about a 1 in 90 chance for that decrease in entropy ( 2 . 7 × 10 23 J/K size 12{ +- 2 "." 7´"10" rSup { size 8{ +- "23"} } " J/K"} {} ) to occur. If we calculate the decrease in entropy to move to the most orderly state, we get Δ S = 92 × 10 23 J/K size 12{DS= +- "92"´"10" rSup { size 8{ +- "23"} } " J/K"} {} . There is about a 1  in  10 30 size 12{1" in ""10" rSup { size 8{"30"} } } {} chance of this change occurring. So while very small decreases in entropy are unlikely, slightly greater decreases are impossibly unlikely. These probabilities imply, again, that for a macroscopic system, a decrease in entropy is impossible. For example, for heat transfer to occur spontaneously from 1.00 kg of C size 12{0ºC} {} ice to its C size 12{0°C} {} environment, there would be a decrease in entropy of 1 . 22 × 10 3 J/K size 12{1 "." "22" times "10" rSup { size 8{3} } " J/K"} {} . Given that a Δ S  of 10 21 J/K size 12{DS" of 10" rSup { size 8{ +- "21"} } " J/K"} {} corresponds to about a 1  in  10 30 chance, a decrease of this size ( 10 3 J/K size 12{"10" rSup { size 8{3} } " J/K"} {} ) is an utter impossibility. Even for a milligram of melted ice to spontaneously refreeze is impossible.

Got questions? Get instant answers now!

Problem-solving strategies for entropy

  1. Examine the situation to determine if entropy is involved.
  2. Identify the system of interest and draw a labeled diagram of the system showing energy flow.
  3. Identify exactly what needs to be determined in the problem (identify the unknowns). A written list is useful.
  4. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). You must carefully identify the heat transfer, if any, and the temperature at which the process takes place. It is also important to identify the initial and final states.
  5. Solve the appropriate equation for the quantity to be determined (the unknown). Note that the change in entropy can be determined between any states by calculating it for a reversible process.
  6. Substitute the known value along with their units into the appropriate equation, and obtain numerical solutions complete with units.
  7. To see if it is reasonable: Does it make sense? For example, total entropy should increase for any real process or be constant for a reversible process. Disordered states should be more probable and have greater entropy than ordered states.

Section summary

  • Disorder is far more likely than order, which can be seen statistically.
  • The entropy of a system in a given state (a macrostate) can be written as
    S = k ln W ,
    where k = 1.38 × 10 –23 J/K is Boltzmann’s constant, and ln W is the natural logarithm of the number of microstates W corresponding to the given macrostate.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask