<< Chapter < Page Chapter >> Page >

A pure LC circuit with negligible resistance oscillates at f 0 size 12{f rSub { size 8{0} } } {} , the same resonant frequency as an RLC circuit. It can serve as a frequency standard or clock circuit—for example, in a digital wristwatch. With a very small resistance, only a very small energy input is necessary to maintain the oscillations. The circuit is analogous to a car with no shock absorbers. Once it starts oscillating, it continues at its natural frequency for some time. [link] shows the analogy between an LC circuit and a mass on a spring.

The figure describes four stages of an L C oscillation circuit compared to a mass oscillating on a spring. Part a of the figure shows a mass attached to a horizontal spring. The spring is attached to a fixed support on the left. The mass is at rest as shown by velocity v equals zero. The energy of the spring is shown as potential energy. This is compared with a circuit containing a capacitor C and inductor L connected together. The energy is shown as stored in the electric field E of the capacitor between the plates. One plate is shown to have a negative polarity and other plate is shown to have a positive polarity. Part b of the figure shows a mass attached to a horizontal spring which is attached to a fixed support on the left. The mass is shown to move horizontal toward the fixed support with velocity v. The energy here is stored as the kinetic energy of the spring. This is compared with a circuit containing a capacitor C and inductor L connected together. A current is shown in the circuit and energy is stored as magnetic field B in the inductor. Part c of the figure shows a mass attached to a horizontal spring which is attached to a fixed support on the left. The spring is shown as not stretched and the energy is shown as potential energy of the spring. The mass is show to have displaced toward left. This is compared with a circuit containing a capacitor C and inductor L connected together. The energy is shown as stored in the electric field E of the capacitor between the plates. One plate is shown to have a negative polarity and other plate is shown to have a positive polarity. But the polarities are reverse of the first case in part a. Part d of the figure shows a mass attached to a horizontal spring which is attached to a fixed support on the left. The mass is shown to move toward right with velocity v. the energy of the spring is kinetic energy. This is compared with a circuit containing a capacitor C and inductor L connected together. A current is shown in the circuit opposite to that in part b and energy is stored as magnetic field B in the inductor.
An LC circuit is analogous to a mass oscillating on a spring with no friction and no driving force. Energy moves back and forth between the inductor and capacitor, just as it moves from kinetic to potential in the mass-spring system.

Phet explorations: circuit construction kit (ac+dc), virtual lab

Build circuits with capacitors, inductors, resistors and AC or DC voltage sources, and inspect them using lab instruments such as voltmeters and ammeters.

Circuit Construction Kit (AC+DC), Virtual Lab

Section summary

  • The AC analogy to resistance is impedance Z , the combined effect of resistors, inductors, and capacitors, defined by the AC version of Ohm’s law:
    I 0 = V 0 Z or I rms = V rms Z , size 12{I rSub { size 8{0} } = { {V rSub { size 8{0} } } over {Z} } " or "I rSub { size 8{ ital "rms"} } = { {V rSub { size 8{ ital "rms"} } } over {Z} } ,} {}
    where I 0 size 12{I rSub { size 8{0} } } {} is the peak current and V 0 size 12{V rSub { size 8{0} } } {} is the peak source voltage.
  • Impedance has units of ohms and is given by Z = R 2 + ( X L X C ) 2 size 12{Z= sqrt {R rSup { size 8{2} } + \( X rSub { size 8{L} } - X rSub { size 8{C} } \) rSup { size 8{2} } } } {} .
  • The resonant frequency f 0 size 12{f rSub { size 8{0} } } {} , at which X L = X C size 12{X rSub { size 8{L} } =X rSub { size 8{C} } } {} , is
    f 0 = 1 LC . size 12{f rSub { size 8{0} } = { {1} over {2π sqrt { ital "LC"} } } } {}
  • In an AC circuit, there is a phase angle ϕ size 12{ϕ} {} between source voltage V size 12{V} {} and the current I size 12{I} {} , which can be found from
    cos ϕ = R Z , size 12{"cos"ϕ= { {R} over {Z} } } {}
  • ϕ = size 12{ϕ=0 rSup { size 8{ circ } } } {} for a purely resistive circuit or an RLC circuit at resonance.
  • The average power delivered to an RLC circuit is affected by the phase angle and is given by
    P ave = I rms V rms cos ϕ , size 12{P rSub { size 8{"ave"} } =I rSub { size 8{"rms"} } V rSub { size 8{"rms"} } "cos"ϕ} {}
    cos ϕ size 12{"cos"ϕ} {} is called the power factor, which ranges from 0 to 1.

Conceptual questions

Does the resonant frequency of an AC circuit depend on the peak voltage of the AC source? Explain why or why not.

Got questions? Get instant answers now!

Suppose you have a motor with a power factor significantly less than 1. Explain why it would be better to improve the power factor as a method of improving the motor’s output, rather than to increase the voltage input.

Got questions? Get instant answers now!

Problems&Exercises

An RL circuit consists of a 40.0 Ω resistor and a 3.00 mH inductor. (a) Find its impedance Z at 60.0 Hz and 10.0 kHz. (b) Compare these values of Z with those found in [link] in which there was also a capacitor.

(a) 40.02 Ω at 60.0 Hz, 193 Ω at 10.0 kHz

(b) At 60 Hz, with a capacitor, Z=531 Ω , over 13 times as high as without the capacitor. The capacitor makes a large difference at low frequencies. At 10 kHz, with a capacitor Z=190 Ω , about the same as without the capacitor. The capacitor has a smaller effect at high frequencies.

Got questions? Get instant answers now!

An RC circuit consists of a 40.0 Ω resistor and a 5.00 μF capacitor. (a) Find its impedance at 60.0 Hz and 10.0 kHz. (b) Compare these values of Z with those found in [link] , in which there was also an inductor.

Got questions? Get instant answers now!

An LC circuit consists of a 3 . 00 mH size 12{3 "." "00" μH} {} inductor and a 5 . 00 μF size 12{5 "." "00" μF} {} capacitor. (a) Find its impedance at 60.0 Hz and 10.0 kHz. (b) Compare these values of Z size 12{Z} {} with those found in [link] in which there was also a resistor.

(a) 529 Ω at 60.0 Hz, 185 Ω at 10.0 kHz

(b) These values are close to those obtained in [link] because at low frequency the capacitor dominates and at high frequency the inductor dominates. So in both cases the resistor makes little contribution to the total impedance.

Got questions? Get instant answers now!

What is the resonant frequency of a 0.500 mH inductor connected to a 40.0 μF capacitor?

Got questions? Get instant answers now!

To receive AM radio, you want an RLC circuit that can be made to resonate at any frequency between 500 and 1650 kHz. This is accomplished with a fixed 1.00 μH inductor connected to a variable capacitor. What range of capacitance is needed?

9.30 nF to 101 nF

Got questions? Get instant answers now!

Suppose you have a supply of inductors ranging from 1.00 nH to 10.0 H, and capacitors ranging from 1.00 pF to 0.100 F. What is the range of resonant frequencies that can be achieved from combinations of a single inductor and a single capacitor?

Got questions? Get instant answers now!

What capacitance do you need to produce a resonant frequency of 1.00 GHz, when using an 8.00 nH inductor?

3.17 pF

Got questions? Get instant answers now!

What inductance do you need to produce a resonant frequency of 60.0 Hz, when using a 2.00 μF capacitor?

Got questions? Get instant answers now!

The lowest frequency in the FM radio band is 88.0 MHz. (a) What inductance is needed to produce this resonant frequency if it is connected to a 2.50 pF capacitor? (b) The capacitor is variable, to allow the resonant frequency to be adjusted to as high as 108 MHz. What must the capacitance be at this frequency?

(a) 1.31 μH

(b) 1.66 pF

Got questions? Get instant answers now!

An RLC series circuit has a 2.50 Ω resistor, a 100 μH inductor, and an 80.0 μF capacitor.(a) Find the circuit’s impedance at 120 Hz. (b) Find the circuit’s impedance at 5.00 kHz. (c) If the voltage source has V rms = 5 . 60 V size 12{V rSub { size 8{"rms"} } =5 "." "60"`V} {} , what is I rms size 12{I rSub { size 8{"rms"} } } {} at each frequency? (d) What is the resonant frequency of the circuit? (e) What is I rms size 12{I rSub { size 8{"rms"} } } {} at resonance?

Got questions? Get instant answers now!

An RLC series circuit has a 1.00 kΩ resistor, a 150 μH inductor, and a 25.0 nF capacitor. (a) Find the circuit’s impedance at 500 Hz. (b) Find the circuit’s impedance at 7.50 kHz. (c) If the voltage source has V rms = 408 V size 12{V rSub { size 8{"rms"} } ="408"`V} {} , what is I rms size 12{I rSub { size 8{"rms"} } } {} at each frequency? (d) What is the resonant frequency of the circuit? (e) What is I rms size 12{I rSub { size 8{"rms"} } } {} at resonance?

(a) 12.8 kΩ

(b) 1.31 kΩ

(c) 31.9 mA at 500 Hz, 312 mA at 7.50 kHz

(d) 82.2 kHz

(e) 0.408 A

Got questions? Get instant answers now!

An RLC series circuit has a 2.50 Ω resistor, a 100 μH inductor, and an 80.0 μF capacitor. (a) Find the power factor at f = 120 Hz . (b) What is the phase angle at 120 Hz? (c) What is the average power at 120 Hz? (d) Find the average power at the circuit’s resonant frequency.

Got questions? Get instant answers now!

An RLC series circuit has a 1.00 kΩ resistor, a 150 μH inductor, and a 25.0 nF capacitor. (a) Find the power factor at f = 7.50 Hz . (b) What is the phase angle at this frequency? (c) What is the average power at this frequency? (d) Find the average power at the circuit’s resonant frequency.

(a) 0.159

(b) 80.9º

(c) 26.4 W

(d) 166 W

Got questions? Get instant answers now!

An RLC series circuit has a 200 Ω resistor and a 25.0 mH inductor. At 8000 Hz, the phase angle is 45.0º . (a) What is the impedance? (b) Find the circuit’s capacitance. (c) If V rms = 408 V size 12{V rSub { size 8{"rms"} } ="408"`V} {} is applied, what is the average power supplied?

Got questions? Get instant answers now!

Referring to [link] , find the average power at 10.0 kHz.

16.0 W

Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask