<< Chapter < Page Chapter >> Page >
N sin θ = mv 2 r . size 12{N"sin"θ= { { ital "mv" rSup { size 8{2} } } over {r} } } {}

Because the car does not leave the surface of the road, the net vertical force must be zero, meaning that the vertical components of the two external forces must be equal in magnitude and opposite in direction. From the figure, we see that the vertical component of the normal force is N cos θ size 12{N"cos"θ} {} , and the only other vertical force is the car’s weight. These must be equal in magnitude; thus,

N cos θ = mg . size 12{N"cos"θ= ital "mg"} {}

Now we can combine the last two equations to eliminate N size 12{N} {} and get an expression for θ size 12{θ} {} , as desired. Solving the second equation for N = mg / ( cos θ ) size 12{N= ital "mg"/ \( "cos"θ \) } {} , and substituting this into the first yields

mg sin θ cos θ = mv 2 r
mg tan ( θ ) = mv 2 r tan θ = v 2 rg.

Taking the inverse tangent gives

θ = tan 1 v 2 rg (ideally banked curve, no friction). size 12{θ="tan" rSup { size 8{ - 1} } left ( { {v rSup { size 8{2} } } over { ital "rg"} } right )} {}

This expression can be understood by considering how θ size 12{θ} {} depends on v size 12{v} {} and r size 12{r} {} . A large θ size 12{θ} {} will be obtained for a large v size 12{v} {} and a small r size 12{r} {} . That is, roads must be steeply banked for high speeds and sharp curves. Friction helps, because it allows you to take the curve at greater or lower speed than if the curve is frictionless. Note that θ size 12{θ} {} does not depend on the mass of the vehicle.

In this figure, a car from the backside is shown, turning to the left, on a slope angling downward to the left. A point in the middle of the back of the car is shown which shows one downward vector depicting weight, w, and an upward arrow depicting force N, which is a linear line along the car and is at an angle theta with the straight up arrow. The slope is at an angle theta with the horizontal surface below the slope. The force values, N multipliy sine theta equals to centripetal force, the net force on the car and N cosine theta equal to w are given below the car.
The car on this banked curve is moving away and turning to the left.

What is the ideal speed to take a steeply banked tight curve?

Curves on some test tracks and race courses, such as the Daytona International Speedway in Florida, are very steeply banked. This banking, with the aid of tire friction and very stable car configurations, allows the curves to be taken at very high speed. To illustrate, calculate the speed at which a 100 m radius curve banked at 65.0° should be driven if the road is frictionless.

Strategy

We first note that all terms in the expression for the ideal angle of a banked curve except for speed are known; thus, we need only rearrange it so that speed appears on the left-hand side and then substitute known quantities.

Solution

Starting with

tan θ = v 2 rg size 12{"tan"θ= { {v rSup { size 8{2} } } over { ital "rg"} } } {}

we get

v = ( rg tan θ ) 1 / 2 . size 12{v= \( ital "rg""tan"θ \) rSup { size 8{1/2} } } {}

Noting that tan 65.0º = 2.14, we obtain

v = ( 100 m ) ( 9.80 m /s 2 ) ( 2 . 14 ) 1 / 2 = 45.8 m/s.

Discussion

This is just about 165 km/h, consistent with a very steeply banked and rather sharp curve. Tire friction enables a vehicle to take the curve at significantly higher speeds.

Calculations similar to those in the preceding examples can be performed for a host of interesting situations in which centripetal force is involved—a number of these are presented in this chapter’s Problems and Exercises.

Got questions? Get instant answers now!

Take-home experiment

Ask a friend or relative to swing a golf club or a tennis racquet. Take appropriate measurements to estimate the centripetal acceleration of the end of the club or racquet. You may choose to do this in slow motion.

Phet explorations: gravity and orbits

Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!

Gravity and Orbits

Section summary

  • Centripetal force F c size 12{F rSub { size 8{c} } } {} is any force causing uniform circular motion. It is a “center-seeking” force that always points toward the center of rotation. It is perpendicular to linear velocity v size 12{v} {} and has magnitude
    F c = ma c ,

    which can also be expressed as

    F c = m v 2 r or F c = mr ω 2 ,

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask