<< Chapter < Page Chapter >> Page >
The figure shows a button-shaped magnet floating above a superconducting puck. Some wispy fog is flowing from the puck.
One characteristic of a superconductor is that it excludes magnetic flux and, thus, repels other magnets. The small magnet levitated above a high-temperature superconductor, which is cooled by liquid nitrogen, gives evidence that the material is superconducting. When the material warms and becomes conducting, magnetic flux can penetrate it, and the magnet will rest upon it. (credit: Saperaud)

The search is on for even higher T c size 12{T rSub { size 8{c} } } {} superconductors, many of complex and exotic copper oxide ceramics, sometimes including strontium, mercury, or yttrium as well as barium, calcium, and other elements. Room temperature (about 293 K) would be ideal, but any temperature close to room temperature is relatively cheap to produce and maintain. There are persistent reports of T c size 12{T rSub { size 8{c} } } {} s over 200 K and some in the vicinity of 270 K. Unfortunately, these observations are not routinely reproducible, with samples losing their superconducting nature once heated and recooled (cycled) a few times (see [link] .) They are now called USOs or unidentified superconducting objects, out of frustration and the refusal of some samples to show high T c size 12{T rSub { size 8{c} } } {} even though produced in the same manner as others. Reproducibility is crucial to discovery, and researchers are justifiably reluctant to claim the breakthrough they all seek. Time will tell whether USOs are real or an experimental quirk.

The theory of ordinary superconductors is difficult, involving quantum effects for widely separated electrons traveling through a material. Electrons couple in a manner that allows them to get through the material without losing energy to it, making it a superconductor. High- T c size 12{T rSub { size 8{c} } } {} superconductors are more difficult to understand theoretically, but theorists seem to be closing in on a workable theory. The difficulty of understanding how electrons can sneak through materials without losing energy in collisions is even greater at higher temperatures, where vibrating atoms should get in the way. Discoverers of high T c size 12{T rSub { size 8{c} } } {} may feel something analogous to what a politician once said upon an unexpected election victory—“I wonder what we did right?”

Figure a is a graph of resistivity versus temperature. The resistivity goes from zero to zero point six milli ohm centimeters and the temperature goes from one hundred to three hundred kelvin. There are three curves on the graph. The first curve starts near zero point one milli ohm centimeters, one hundred kelvin, and increases linearly to zero point six milli ohm centimeters, two hundred and eighty kelvin. The second curve is at zero resistivity from 100 kelvin to about two hundred and thirty five kelvin, then jumps straight up to zero point four milli ohm centimeters, after which it increases linearly with temperature with the same slope as the first curve. The third curve has one point at minus zero point zero five milli ohm centimeters at about one hundred and thirty kelvin, then becomes positive and increases essentially linearly with the same slope as the first curve. Figure b shows a scaffolding structure made up of rods. At each vertex in the scaffold there is a ball that is either white, red, purple, or blue. Each color represents a different kind of atom. The white balls are the largest, then the red, then the purple, and the blue balls are the smallest. The balls are arranged in a systematic pattern. From bottom to top the scaffold layers are formed from white and red balls, then red and blue balls, then purple balls, then again red and blue balls, then finally white and red balls again. In each individual layer the balls form various grid patterns. This scaffold structure forms a brick-like shape and an identical such brick is positioned above it with a gap between the two bricks. The two bricks are connected together by a single layer of blue balls.
(a) This graph, adapted from an article in Physics Today , shows the behavior of a single sample of a high-temperature superconductor in three different trials. In one case the sample exhibited a T c size 12{T rSub { size 8{c} } } {} of about 230 K, whereas in the others it did not become superconducting at all. The lack of reproducibility is typical of forefront experiments and prohibits definitive conclusions. (b) This colorful diagram shows the complex but systematic nature of the lattice structure of a high-temperature superconducting ceramic. (credit: en:Cadmium, Wikimedia Commons)

Section summary

  • High-temperature superconductors are materials that become superconducting at temperatures well above a few kelvin.
  • The critical temperature T c size 12{T rSub { size 8{c} } } {} is the temperature below which a material is superconducting.
  • Some high-temperature superconductors have verified T c size 12{T rSub { size 8{c} } } {} s above 125 K, and there are reports of T c size 12{T rSub { size 8{c} } } {} s as high as 250 K.

Conceptual questions

What is critical temperature T c size 12{T rSub { size 8{c} } } {} ? Do all materials have a critical temperature? Explain why or why not.

Got questions? Get instant answers now!

Explain how good thermal contact with liquid nitrogen can keep objects at a temperature of 77 K (liquid nitrogen’s boiling point at atmospheric pressure).

Got questions? Get instant answers now!

Not only is liquid nitrogen a cheaper coolant than liquid helium, its boiling point is higher (77 K vs. 4.2 K). How does higher temperature help lower the cost of cooling a material? Explain in terms of the rate of heat transfer being related to the temperature difference between the sample and its surroundings.

Got questions? Get instant answers now!

Problem exercises

A section of superconducting wire carries a current of 100 A and requires 1.00 L of liquid nitrogen per hour to keep it below its critical temperature. For it to be economically advantageous to use a superconducting wire, the cost of cooling the wire must be less than the cost of energy lost to heat in the wire. Assume that the cost of liquid nitrogen is $0.30 per liter, and that electric energy costs $0.10 per kW·h. What is the resistance of a normal wire that costs as much in wasted electric energy as the cost of liquid nitrogen for the superconductor?

0.30 Ω size 12{0 "." "30"` %OMEGA } {}
Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask