<< Chapter < Page Chapter >> Page >
m = m o m e , size 12{m=m rSub { size 8{o} } m rSub { size 8{e} } } {}

where m o is the magnification of the objective and m e is the magnification of the eyepiece. This equation can be generalized for any combination of thin lenses and mirrors that obey the thin lens equations.

Overall magnification

The overall magnification of a multiple-element system is the product of the individual magnifications of its elements.

Microscope magnification

Calculate the magnification of an object placed 6.20 mm from a compound microscope that has a 6.00 mm focal length objective and a 50.0 mm focal length eyepiece. The objective and eyepiece are separated by 23.0 cm.

Strategy and Concept

This situation is similar to that shown in [link] . To find the overall magnification, we must find the magnification of the objective, then the magnification of the eyepiece. This involves using the thin lens equation.

Solution

The magnification of the objective lens is given as

m o = d i d o ,

where d o size 12{d rSub { size 8{o} } } {} and d i size 12{d rSub { size 8{i} } } {} are the object and image distances, respectively, for the objective lens as labeled in [link] . The object distance is given to be d o = 6.20 mm , but the image distance d i is not known. Isolating d i , we have

1 d i = 1 f o 1 d o , size 12{ { {1} over {d rSub { size 8{i} } } } = { {1} over {f rSub { size 8{o} } } } - { {1} over {d rSub { size 8{o} } } } } {}

where f o size 12{f rSub { size 8{o} } } {} is the focal length of the objective lens. Substituting known values gives

1 d i = 1 6 . 00 mm 1 6 . 20 mm = 0 . 00538 mm . size 12{ { {1} over {d rSub { size 8{i} } } } = { {1} over {6 "." "00 mm"} } - { {1} over {6 "." "20 mm"} } = { {0 "." "00538"} over {"mm"} } } {}

We invert this to find d i size 12{d rSub { size 8{i} } } {} :

d i = 186 mm. size 12{d rSub { size 8{i} } ="186 mm"} {}

Substituting this into the expression for m o size 12{m rSub { size 8{o} } } {} gives

m o = d i d o = 186 mm 6.20 mm = 30.0.

Now we must find the magnification of the eyepiece, which is given by

m e = d i d o , size 12{m rSub { size 8{e} } = - { {d rSub { size 8{i} } rSup { size 8{'} } } over {d rSub { size 8{o} } rSup { size 8{'} } } } } {}

where d i size 12{d rSub { size 8{i} rSup { size 8{'} } } } {} and d o size 12{d rSub { size 8{o} rSup { size 8{'} } } } {} are the image and object distances for the eyepiece (see [link] ). The object distance is the distance of the first image from the eyepiece. Since the first image is 186 mm to the right of the objective and the eyepiece is 230 mm to the right of the objective, the object distance is d o = 230 mm 186 mm = 44.0 mm . This places the first image closer to the eyepiece than its focal length, so that the eyepiece will form a case 2 image as shown in the figure. We still need to find the location of the final image d i in order to find the magnification. This is done as before to obtain a value for 1 / d i size 12{ {1} slash {d rSub { size 8{i} rSup { size 8{'} } } } } {} :

1 d i = 1 f e 1 d o = 1 50.0 mm 1 44.0 mm = 0.00273 mm . size 12{ { {1} over {d rSub { size 8{i} } rSup { size 8{'} } } } = { {1} over {f rSub { size 8{e} } } } - { {1} over {d rSub { size 8{o} } rSup { size 8{'} } } } = { {1} over {"50" "." "0 mm"} } - { {1} over {"44" "." "0 mm"} } = - { {0 "." "00273"} over {"mm"} } } {}

Inverting gives

d i = mm 0 . 00273 = 367 mm . size 12{d rSub { size 8{i} } rSup { size 8{'} } = - { {"mm"} over {0 "." "00273"} } = - "367 mm"} {}

The eyepiece’s magnification is thus

m e = d i d o = 367 mm 44 . 0 mm = 8 . 33 . size 12{m rSub { size 8{e} } = - { {d rSub { size 8{i} } rSup { size 8{'} } } over {d rSub { size 8{o} } rSup { size 8{'} } } } = - { { - "367 mm"} over {"44" "." "0 mm"} } =8 "." "33"} {}

So the overall magnification is

m = m o m e = ( 30.0 ) ( 8 . 33 ) = 250 . size 12{m=m rSub { size 8{o} } m rSub { size 8{e} } = \( - "30" "." 0 \) \( 8 "." "33" \) = - "250"} {}

Discussion

Both the objective and the eyepiece contribute to the overall magnification, which is large and negative, consistent with [link] , where the image is seen to be large and inverted. In this case, the image is virtual and inverted, which cannot happen for a single element (case 2 and case 3 images for single elements are virtual and upright). The final image is 367 mm (0.367 m) to the left of the eyepiece. Had the eyepiece been placed farther from the objective, it could have formed a case 1 image to the right. Such an image could be projected on a screen, but it would be behind the head of the person in the figure and not appropriate for direct viewing. The procedure used to solve this example is applicable in any multiple-element system. Each element is treated in turn, with each forming an image that becomes the object for the next element. The process is not more difficult than for single lenses or mirrors, only lengthier.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask