<< Chapter < Page Chapter >> Page >
L z = m l h size 12{L rSub { size 8{z} } =m rSub { size 8{l} } { {h} over {2π} } } {} m l = l , l + 1, ... , 1, 0, 1, ... l 1, l , size 12{ left (m rSub { size 8{l} } = - l, - l+1, "." "." "." , - 1, 0, 1, "." "." "." l - 1, l right )} {}

where L z size 12{L rSub { size 8{z} } } {} is the z size 12{z} {} -component of the angular momentum and m l size 12{m rSub { size 8{l} } } {} is the angular momentum projection quantum number. The rule in parentheses for the values of m l size 12{m rSub { size 8{l} } } {} is that it can range from l size 12{ - l} {} to l size 12{l} {} in steps of one. For example, if l = 2 size 12{l=2} {} , then m l size 12{m rSub { size 8{l} } } {} can have the five values –2, –1, 0, 1, and 2. Each m l size 12{m rSub { size 8{l} } } {} corresponds to a different energy in the presence of a magnetic field, so that they are related to the splitting of spectral lines into discrete parts, as discussed in the preceding section. If the z size 12{z} {} -component of angular momentum can have only certain values, then the angular momentum can have only certain directions, as illustrated in [link] .

The image shows two possible values of component of a given angular momentum along z-axis. One circular orbit above the original circular orbit is shown for m sub l value of plus one. Another circular orbit below the original circular orbit is shown for m sub l value of minus one. The angular momentum vector for the top circular orbit makes an angle of theta sub one with the vertical axis. The horizontal angular momentum vector at original circular orbit makes an angle of theta sub two with the vertical axis. The angular momentum vector for the bottom circular orbit makes an angle of theta sub three with the vertical axis.
The component of a given angular momentum along the z -axis (defined by the direction of a magnetic field) can have only certain values; these are shown here for l = 1 , for which m l = 1, 0, and +1 . The direction of L is quantized in the sense that it can have only certain angles relative to the z -axis.

What are the allowed directions?

Calculate the angles that the angular momentum vector L size 12{L} {} can make with the z size 12{z} {} -axis for l = 1 size 12{l=1} {} , as illustrated in [link] .

Strategy

[link] represents the vectors L size 12{L} {} and L z size 12{L rSub { size 8{z} } } {} as usual, with arrows proportional to their magnitudes and pointing in the correct directions. L size 12{L} {} and L z size 12{L rSub { size 8{z} } } {} form a right triangle, with L size 12{L} {} being the hypotenuse and L z size 12{L rSub { size 8{z} } } {} the adjacent side. This means that the ratio of L z size 12{L rSub { size 8{z} } } {} to L size 12{L} {} is the cosine of the angle of interest. We can find L size 12{L} {} and L z size 12{L rSub { size 8{z} } } {} using L = l l + 1 h size 12{L= sqrt {l left (l+1 right )} { {h} over {2π} } } {} and L z = m h size 12{L rSub { size 8{z} } =m { {h} over {2π} } } {} .

Solution

We are given l = 1 size 12{l=1} {} , so that m l size 12{m rSub { size 8{l} } } {} can be +1, 0, or −1. Thus L size 12{L} {} has the value given by L = l l + 1 h size 12{L= sqrt {l left (l+1 right )} { {h} over {2π} } } {} .

L = l l + 1 h = 2 h size 12{L= { { sqrt {l left (l+1 right )} h} over {2π} } = { { sqrt {2} h} over {2π} } } {}

L z size 12{L rSub { size 8{z} } } {} can have three values, given by L z = m l h size 12{L rSub { size 8{z} } =m rSub { size 8{l} } { {h} over {2π} } } {} .

L z = m l h = { h , m l = + 1 0, m l = 0 h , m l = 1

As can be seen in [link] , cos θ = L z /L, and so for m l =+ 1 size 12{m rSub { size 8{l} } "=+"1} {} , we have

cos θ 1 = L Z L = h 2 h = 1 2 = 0 . 707. size 12{"cos"θ rSub { size 8{1} } = { {L rSub { size 8{Z} } } over {L} } = { { { {h} over {2π} } } over { { { sqrt {2} h} over {2π} } } } = { {1} over { sqrt {2} } } =0 "." "707"} {}

Thus,

θ 1 = cos 1 0.707 = 45 . 0º.

Similarly, for m l = 0 size 12{m rSub { size 8{l} } =0} {} , we find cos θ 2 = 0 size 12{"cos"θ rSub { size 8{2} } =0} {} ; thus,

θ 2 = cos 1 0 = 90 . 0º. size 12{θ rSub { size 8{2} } ="cos" rSup { size 8{ - 1} } 0="90" "." 0°} {}

And for m l = 1 size 12{m rSub { size 8{l} } = - 1} {} ,

cos θ 3 = L Z L = h 2 h = 1 2 = 0 . 707, size 12{"cos"θ rSub { size 8{3} } = { {L rSub { size 8{Z} } } over {L} } = { { - { {h} over {2π} } } over { { { sqrt {2} h} over {2π} } } } = - { {1} over { sqrt {2} } } = - 0 "." "707"} {}

so that

θ 3 = cos 1 0 . 707 = 135 . 0º. size 12{θ rSub { size 8{3} } ="cos" rSup { size 8{ - 1} } left ( - 0 "." "707" right )="135" "." 0°} {}

Discussion

The angles are consistent with the figure. Only the angle relative to the z size 12{z} {} -axis is quantized. L size 12{L} {} can point in any direction as long as it makes the proper angle with the z size 12{z} {} -axis. Thus the angular momentum vectors lie on cones as illustrated. This behavior is not observed on the large scale. To see how the correspondence principle holds here, consider that the smallest angle ( θ 1 in the example) is for the maximum value of m l = 0 , namely m l = l . For that smallest angle,

cos θ = L z L = l l l + 1 , size 12{"cos"θ= { {L rSub { size 8{z} } } over {L} } = { {l} over { sqrt {l left (l+1 right )} } } } {}

which approaches 1 as l size 12{l} {} becomes very large. If cos θ = 1 size 12{"cos"θ=1} {} , then θ = . Furthermore, for large l , there are many values of m l , so that all angles become possible as l gets very large.

Got questions? Get instant answers now!

Intrinsic spin angular momentum is quantized in magnitude and direction

There are two more quantum numbers of immediate concern. Both were first discovered for electrons in conjunction with fine structure in atomic spectra. It is now well established that electrons and other fundamental particles have intrinsic spin , roughly analogous to a planet spinning on its axis. This spin is a fundamental characteristic of particles, and only one magnitude of intrinsic spin is allowed for a given type of particle. Intrinsic angular momentum is quantized independently of orbital angular momentum. Additionally, the direction of the spin is also quantized. It has been found that the magnitude of the intrinsic (internal) spin angular momentum    , S size 12{S} {} , of an electron is given by

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 7

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask