<< Chapter < Page Chapter >> Page >

Hadrons and leptons

Particles can also be revealingly grouped according to what forces they feel between them. All particles (even those that are massless) are affected by gravity, since gravity affects the space and time in which particles exist. All charged particles are affected by the electromagnetic force, as are neutral particles that have an internal distribution of charge (such as the neutron with its magnetic moment). Special names are given to particles that feel the strong and weak nuclear forces. Hadrons are particles that feel the strong nuclear force, whereas leptons    are particles that do not. The proton, neutron, and the pions are examples of hadrons. The electron, positron, muons, and neutrinos are examples of leptons, the name meaning low mass. Leptons feel the weak nuclear force. In fact, all particles feel the weak nuclear force. This means that hadrons are distinguished by being able to feel both the strong and weak nuclear forces.

[link] lists the characteristics of some of the most important subatomic particles, including the directly observed carrier particles for the electromagnetic and weak nuclear forces, all leptons, and some hadrons. Several hints related to an underlying substructure emerge from an examination of these particle characteristics. Note that the carrier particles are called gauge bosons . First mentioned in Patterns in Spectra Reveal More Quantization , a boson    is a particle with zero or an integer value of intrinsic spin (such as s = 0, 1, 2, ... size 12{s=0,`1,`2,` "." "." "." } {} ), whereas a fermion    is a particle with a half-integer value of intrinsic spin ( s = 1 / 2, 3 / 2, . . . size 12{s=1/2,`3/2,` "." "." "." } {} ). Fermions obey the Pauli exclusion principle whereas bosons do not. All the known and conjectured carrier particles are bosons.

The upper image shows an electron and positron colliding head-on. The lower image shows a starburst image from which two photons are emerging in opposite directions.
When a particle encounters its antiparticle, they annihilate, often producing pure energy in the form of photons. In this case, an electron and a positron convert all their mass into two identical energy rays, which move away in opposite directions to keep total momentum zero as it was before. Similar annihilations occur for other combinations of a particle with its antiparticle, sometimes producing more particles while obeying all conservation laws.
Selected particle characteristics The lower of the size 12{ -+ {}} {} or ± size 12{ +- {}} {} symbols are the values for antiparticles.
Category Particle name Symbol Antiparticle Rest mass ( MeV / c 2 ) B L e L μ L τ size 12{L rSub { size 8{τ} } } {} S size 12{S} {} Lifetime Lifetimes are traditionally given as t 1 / 2 / 0 . 693 (which is 1 / λ size 12{ {1} slash {λ} } {} , the inverse of the decay constant). (s)
Gauge Photon γ size 12{γ} {} Self 0 0 0 0 0 0 Stable
Bosons W size 12{W} {} W + size 12{W rSup { size 8{+{}} } } {} W size 12{W rSup { size 8{ - {}} } } {} 80 . 39 × 10 3 size 12{"80" "." "22" times "10" rSup { size 8{3} } } {} 0 0 0 0 0 1.6 × 10 25 size 12{3 times "10" rSup { size 8{ - "25"} } } {}
Z size 12{Z} {} Z 0 size 12{Z rSup { size 8{0} } } {} Self 91 . 19 × 10 3 size 12{"91" "." "19" times "10" rSup { size 8{3} } } {} 0 0 0 0 0 1.32 × 10 25 size 12{3 times "10" rSup { size 8{ - "25"} } } {}
Leptons Electron e size 12{e rSup { size 8{ - {}} } } {} e + size 12{e rSup { size 8{ - {}} } } {} 0.511 0 ± 1 size 12{ +- 1} {} 0 0 0 Stable
Neutrino (e) ν e size 12{e rSup { size 8{ - {}} } } {} v ¯ e size 12{ { bar {v}} rSub { size 8{e} } } {} 0 7 . 0 eV size 12{0` left (<7 "." 0`"eV" right )} {} Neutrino masses may be zero. Experimental upper limits are given in parentheses. 0 ± 1 size 12{ +- 1} {} 0 0 0 Stable
Muon μ size 12{μ rSup { size 8{ - {}} } } {} μ + size 12{μ rSup { size 8{+{}} } } {} 105.7 0 0 ± 1 size 12{ +- 1} {} 0 0 2 . 20 × 10 6 size 12{2 "." "20" times "10" rSup { size 8{ - 6} } } {}
Neutrino ( μ size 12{μ} {} ) v μ size 12{v rSub { size 8{μ} } } {} v - μ size 12{v rSub { size 8{μ} } } {} 0 ( < 0.27 ) 0 0 ± 1 size 12{ +- 1} {} 0 0 Stable
Tau τ size 12{τ rSup { size 8{ - {}} } } {} τ + size 12{τ rSup { size 8{+{}} } } {} 1777 0 0 0 ± 1 size 12{ +- 1} {} 0 2 . 91 × 10 13 size 12{2 "." "29" times "10" rSup { size 8{ - "13"} } } {}
Neutrino ( τ size 12{τ} {} ) v τ size 12{v rSub { size 8{τ} } } {} v - τ size 12{ { bar {v}} rSub { size 8{τ} } } {} 0 ( < 31 ) 0 0 0 ± 1 size 12{ +- 1} {} 0 Stable
Hadrons (selected)
  Mesons Pion π + size 12{π rSup { size 8{+{}} } } {} π size 12{π rSup { size 8{ - {}} } } {} 139.6 0 0 0 0 0 2.60 × 10 −8
π 0 size 12{π rSup { size 8{0} } } {} Self 135.0 0 0 0 0 0 8.4 × 10 −17
Kaon K + size 12{K rSup { size 8{+{}} } } {} K size 12{K rSup { size 8{ - {}} } } {} 493.7 0 0 0 0 ± 1 size 12{ +- 1} {} 1.24 × 10 −8
K 0 size 12{K rSup { size 8{0} } } {} K - 0 size 12{ { bar {K}} rSup { size 8{0} } } {} 497.6 0 0 0 0 ± 1 size 12{ +- 1} {} 0.90 × 10 −10
Eta η 0 size 12{η rSup { size 8{0} } } {} Self 547.9 0 0 0 0 0 2.53 × 10 −19
(many other mesons known)
  Baryons Proton p size 12{p} {} p - size 12{ { bar {p}}} {} 938.3 ± 1 0 0 0 0 Stable Experimental lower limit is >5 × 10 32 size 12{>5 times "10" rSup { size 8{"32"} } } {} for proposed mode of decay.
Neutron n size 12{n} {} n - size 12{ { bar {n}}} {} 939.6 ± 1 0 0 0 0 882
Lambda Λ 0 size 12{Λ rSup { size 8{0} } } {} Λ - 0 size 12{ { bar {Λ}} rSup { size 8{0} } } {} 1115.7 ± 1 0 0 0 1 size 12{ -+ 1} {} 2.63 × 10 −10
Sigma Σ + size 12{Σ rSup { size 8{+{}} } } {} Σ - size 12{ { bar {Σ}} rSup { size 8{ - {}} } } {} 1189.4 ± 1 0 0 0 1 size 12{ -+ 1} {} 0.80 × 10 −10
Σ 0 size 12{Σ rSup { size 8{0} } } {} Σ - 0 size 12{ { bar {Σ}} rSup { size 8{0} } } {} 1192.6 ± 1 0 0 0 1 size 12{ -+ 1} {} 7.4 × 10 −20
Σ size 12{Σ rSup { size 8{ - {}} } } {} Σ - + size 12{ { bar {Σ}} rSup { size 8{+{}} } } {} 1197.4 ± 1 0 0 0 1 size 12{ -+ 1} {} 1.48 × 10 −10
Xi Ξ 0 size 12{Ξ rSup { size 8{0} } } {} Ξ - 0 size 12{ { bar {Ξ}} rSup { size 8{0} } } {} 1314.9 ± 1 0 0 0 2 size 12{ -+ 2} {} 2.90 × 10 −10
Ξ size 12{Ξ rSup { size 8{ - {}} } } {} Ξ + size 12{Ξ rSup { size 8{+{}} } } {} 1321.7 ± 1 0 0 0 2 size 12{ -+ 2} {} 1.64 × 10 −10
Omega Ω size 12{ %OMEGA rSup { size 8{ - {}} } } {} Ω + size 12{ %OMEGA rSup { size 8{+{}} } } {} 1672.5 ± 1 0 0 0 3 size 12{ -+ 3} {} 0.82 × 10 −10
(many other baryons known)

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask