<< Chapter < Page Chapter >> Page >

Now let us take a look at the change in entropy of a Carnot engine and its heat reservoirs for one full cycle. The hot reservoir has a loss of entropy Δ S h = Q h / T h size 12{ΔS rSub { size 8{h} } = - Q rSub { size 8{h} } /T rSub { size 8{h} } } {} , because heat transfer occurs out of it (remember that when heat transfers out, then Q size 12{Q} {} has a negative sign). The cold reservoir has a gain of entropy Δ S c = Q c / T c size 12{ΔS rSub { size 8{c} } =Q rSub { size 8{c} } /T rSub { size 8{c} } } {} , because heat transfer occurs into it. (We assume the reservoirs are sufficiently large that their temperatures are constant.) So the total change in entropy is

Δ S tot = Δ S h + Δ S c . size 12{DS rSub { size 8{"tot"} } =DS rSub { size 8{h} } +DS rSub { size 8{c} } "." } {}

Thus, since we know that Q h / T h = Q c / T c size 12{Q rSub { size 8{h} } /T rSub { size 8{h} } =Q rSub { size 8{c} } /T rSub { size 8{c} } } {} for a Carnot engine,

Δ S tot =– Q h T h + Q c T c = 0 . size 12{DS rSub { size 8{"tot"} } "=-" { {Q rSub { size 8{h} } } over {T rSub { size 8{h} } } } + { {Q rSub { size 8{c} } } over {T rSub { size 8{c} } } } =0 "." } {}

This result, which has general validity, means that the total change in entropy for a system in any reversible process is zero.

The entropy of various parts of the system may change, but the total change is zero. Furthermore, the system does not affect the entropy of its surroundings, since heat transfer between them does not occur. Thus the reversible process changes neither the total entropy of the system nor the entropy of its surroundings. Sometimes this is stated as follows: Reversible processes do not affect the total entropy of the universe. Real processes are not reversible, though, and they do change total entropy. We can, however, use hypothetical reversible processes to determine the value of entropy in real, irreversible processes. The following example illustrates this point.

Entropy increases in an irreversible (real) process

Spontaneous heat transfer from hot to cold is an irreversible process. Calculate the total change in entropy if 4000 J of heat transfer occurs from a hot reservoir at T h = 600 K 327º C size 12{T rSub { size 8{h} } ="600"" K " left ("327"°C right )} {} to a cold reservoir at T c = 250 K 23º C size 12{T rSub { size 8{c} } ="250"" K " left (-"23" "." 0°C right )} {} , assuming there is no temperature change in either reservoir. (See [link] .)

Strategy

How can we calculate the change in entropy for an irreversible process when Δ S tot = Δ S h + Δ S c size 12{ΔS rSub { size 8{"tot"} } =ΔS rSub { size 8{h} } +ΔS rSub { size 8{c} } } {} is valid only for reversible processes? Remember that the total change in entropy of the hot and cold reservoirs will be the same whether a reversible or irreversible process is involved in heat transfer from hot to cold. So we can calculate the change in entropy of the hot reservoir for a hypothetical reversible process in which 4000 J of heat transfer occurs from it; then we do the same for a hypothetical reversible process in which 4000 J of heat transfer occurs to the cold reservoir. This produces the same changes in the hot and cold reservoirs that would occur if the heat transfer were allowed to occur irreversibly between them, and so it also produces the same changes in entropy.

Solution

We now calculate the two changes in entropy using Δ S tot = Δ S h + Δ S c size 12{DS rSub { size 8{"tot"} } =DS rSub { size 8{h} } +DS rSub { size 8{c} } } {} . First, for the heat transfer from the hot reservoir,

Δ S h = Q h T h = 4000 J 600 K = 6 . 67 J/K . size 12{DS rSub { size 8{h} } = { {-Q rSub { size 8{h} } } over {T rSub { size 8{h} } } } = { {-"4000"" J"} over {"600 K"} } "=-"6 "." "67"" J/K"} {}

And for the cold reservoir,

Δ S c = Q c T c = 4000 J 250 K = 16 . 0 J/K . size 12{DS rSub { size 8{c} } = { {-Q rSub { size 8{c} } } over {T rSub { size 8{c} } } } = { {"4000"" J"} over {"250 K"} } ="16" "." 0" J/K"} {}

Thus the total is

Δ S tot = Δ S h + Δ S c = ( 6 . 67 +16 . 0 ) J/K = 9.33 J/K. alignl { stack { size 12{DS rSub { size 8{"tot"} } =DS rSub { size 8{h} } +DS rSub { size 8{c} } } {} #" =" \( +- 6 "." "67 +16" "." 0 \) " J/K" {} # " =9" "." "33 J/K" "." {}} } {}

Discussion

There is an increase in entropy for the system of two heat reservoirs undergoing this irreversible heat transfer. We will see that this means there is a loss of ability to do work with this transferred energy. Entropy has increased, and energy has become unavailable to do work.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask