<< Chapter < Page Chapter >> Page >
Diffraction pattern obtained for electrons diffracted by crystalline silicon is shown. The diffraction pattern has a bright spot at the center of a circle with brighter and darker regions occurring in a symmetric manner.
This diffraction pattern was obtained for electrons diffracted by crystalline silicon. Bright regions are those of constructive interference, while dark regions are those of destructive interference. (credit: Ndthe, Wikimedia Commons)

Electron wavelength versus velocity and energy

For an electron having a de Broglie wavelength of 0.167 nm (appropriate for interacting with crystal lattice structures that are about this size): (a) Calculate the electron’s velocity, assuming it is nonrelativistic. (b) Calculate the electron’s kinetic energy in eV.

Strategy

For part (a), since the de Broglie wavelength is given, the electron’s velocity can be obtained from λ = h / p size 12{λ = h/p} {} by using the nonrelativistic formula for momentum, p = mv. size 12{p= ital "mv"} {} For part (b), once v size 12{v} {} is obtained (and it has been verified that v size 12{v} {} is nonrelativistic), the classical kinetic energy is simply ( 1 / 2 ) mv 2 . size 12{ \( 1/2 \) ital "mv" rSup { size 8{2} } } {}

Solution for (a)

Substituting the nonrelativistic formula for momentum ( p = mv size 12{p= ital "mv"} {} ) into the de Broglie wavelength gives

λ = h p = h mv . size 12{λ = { {h} over {p} } = { {h} over { ital "mv"} } } {}

Solving for v size 12{v} {} gives

v = h . size 12{v = { {h} over {mλ} } } {}

Substituting known values yields

v = 6 . 63 × 10 –34 J s ( 9.11 × 10 –31 kg ) ( 0 . 167 × 10 –9 m ) = 4 . 36 × 10 6 m/s . size 12{v = { {6 "." "63 " times " 10" rSup { size 8{"–34"} } " J " cdot " s"} over { \( 9 "." "11 " times " 10" rSup { size 8{"–31"} } " kg" \) \( 0 "." "167 " times " 10" rSup { size 8{"–9"} } " m" \) } } =" 4" "." "36 " times " 10" rSup { size 8{6} } " m/s"} {}

Solution for (b)

While fast compared with a car, this electron’s speed is not highly relativistic, and so we can comfortably use the classical formula to find the electron’s kinetic energy and convert it to eV as requested.

KE = 1 2 mv 2 = 1 2 ( 9.11 × 10 –31 kg ) ( 4.36 × 10 6 m/s ) 2 = (86.4 × 10 –18 J) ( 1 eV 1.602 × 10 –19 J ) = 54.0 eV alignl { stack { size 12{"KE "= { {1} over {2} } ital "mv" rSup { size 8{2} } } {} #=" 0" "." 5 \( 9 "." "11 " times " 10" rSup { size 8{"–31"} } " kg" \) \( 4 "." "36 " times " 10" rSup { size 8{6} } " m/s" \) rSup { size 8{2} } {} # =" 8" "." "64 " times " 10" rSup { size 8{"–18"} } " J " cdot { {"1eV"} over {1 "." "60 " times " 10" rSup { size 8{"–19"} } " J"} } {} #=" 54" "." "0 eV" "." {} } } {}

Discussion

This low energy means that these 0.167-nm electrons could be obtained by accelerating them through a 54.0-V electrostatic potential, an easy task. The results also confirm the assumption that the electrons are nonrelativistic, since their velocity is just over 1% of the speed of light and the kinetic energy is about 0.01% of the rest energy of an electron (0.511 MeV). If the electrons had turned out to be relativistic, we would have had to use more involved calculations employing relativistic formulas.

Got questions? Get instant answers now!

Electron microscopes

One consequence or use of the wave nature of matter is found in the electron microscope. As we have discussed, there is a limit to the detail observed with any probe having a wavelength. Resolution, or observable detail, is limited to about one wavelength. Since a potential of only 54 V can produce electrons with sub-nanometer wavelengths, it is easy to get electrons with much smaller wavelengths than those of visible light (hundreds of nanometers). Electron microscopes can, thus, be constructed to detect much smaller details than optical microscopes. (See [link] .)

There are basically two types of electron microscopes. The transmission electron microscope (TEM) accelerates electrons that are emitted from a hot filament (the cathode). The beam is broadened and then passes through the sample. A magnetic lens focuses the beam image onto a fluorescent screen, a photographic plate, or (most probably) a CCD (light sensitive camera), from which it is transferred to a computer. The TEM is similar to the optical microscope, but it requires a thin sample examined in a vacuum. However it can resolve details as small as 0.1 nm ( 10 10 m size 12{"10" rSup { size 8{ - "10"} } `m} {} ), providing magnifications of 100 million times the size of the original object. The TEM has allowed us to see individual atoms and structure of cell nuclei.

Questions & Answers

Why is b in the answer
Dahsolar Reply
how do you work it out?
Brad Reply
answer
Ernest
heheheehe
Nitin
(Pcos∅+qsin∅)/(pcos∅-psin∅)
John Reply
how to do that?
Rosemary Reply
what is it about?
Amoah
how to answer the activity
Chabelita Reply
how to solve the activity
Chabelita
solve for X,,4^X-6(2^)-16=0
Alieu Reply
x4xminus 2
Lominate
sobhan Singh jina uniwarcity tignomatry ka long answers tile questions
harish Reply
t he silly nut company makes two mixtures of nuts: mixture a and mixture b. a pound of mixture a contains 12 oz of peanuts, 3 oz of almonds and 1 oz of cashews and sells for $4. a pound of mixture b contains 12 oz of peanuts, 2 oz of almonds and 2 oz of cashews and sells for $5. the company has 1080
ZAHRO Reply
If  , , are the roots of the equation 3 2 0, x px qx r     Find the value of 1  .
Swetha Reply
Parts of a pole were painted red, blue and yellow. 3/5 of the pole was red and 7/8 was painted blue. What part was painted yellow?
Patrick Reply
Parts of the pole was painted red, blue and yellow. 3 /5 of the pole was red and 7 /8 was painted blue. What part was painted yellow?
Patrick
how I can simplify algebraic expressions
Katleho Reply
Lairene and Mae are joking that their combined ages equal Sam’s age. If Lairene is twice Mae’s age and Sam is 69 yrs old, what are Lairene’s and Mae’s ages?
Mary Reply
23yrs
Yeboah
lairenea's age is 23yrs
ACKA
hy
Katleho
Ello everyone
Katleho
Laurene is 46 yrs and Mae is 23 is
Solomon
hey people
christopher
age does not matter
christopher
solve for X, 4^x-6(2*)-16=0
Alieu
prove`x^3-3x-2cosA=0 (-π<A<=π
Mayank Reply
create a lesson plan about this lesson
Rose Reply
Excusme but what are you wrot?
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask