<< Chapter < Page Chapter >> Page >

But because particle 2 is initially at rest, this equation becomes

m 1 v 1 x = m 1 v 1 x + m 2 v 2 x .

The components of the velocities along the x size 12{x} {} -axis have the form v cos θ size 12{v`"cos"`θ} {} . Because particle 1 initially moves along the x size 12{x} {} -axis, we find v 1 x = v 1 .

Conservation of momentum along the x size 12{x} {} -axis gives the following equation:

m 1 v 1 = m 1 v 1 cos θ 1 + m 2 v 2 cos θ 2 ,

where θ 1 size 12{θ rSub { size 8{1} } } {} and θ 2 size 12{θ rSub { size 8{2} } } {} are as shown in [link] .

Conservation of momentum along the x size 12{x} {} -axis

m 1 v 1 = m 1 v 1 cos θ 1 + m 2 v 2 cos θ 2

Along the y size 12{y} {} -axis, the equation for conservation of momentum is

p 1 y + p 2 y = p 1 y + p 2 y

or

m 1 v 1 y + m 2 v 2 y = m 1 v 1 y + m 2 v 2 y .

But v 1 y is zero, because particle 1 initially moves along the x size 12{x} {} -axis. Because particle 2 is initially at rest, v 2 y is also zero. The equation for conservation of momentum along the y size 12{y} {} -axis becomes

0 = m 1 v 1 y + m 2 v 2 y .

The components of the velocities along the y size 12{y} {} -axis have the form v sin θ size 12{v`"sin"`θ} {} .

Thus, conservation of momentum along the y size 12{y} {} -axis gives the following equation:

0 = m 1 v 1 sin θ 1 + m 2 v 2 sin θ 2 .

Conservation of momentum along the y size 12{y} {} -axis

0 = m 1 v 1 sin θ 1 + m 2 v 2 sin θ 2

The equations of conservation of momentum along the x size 12{x} {} -axis and y size 12{y} {} -axis are very useful in analyzing two-dimensional collisions of particles, where one is originally stationary (a common laboratory situation). But two equations can only be used to find two unknowns, and so other data may be necessary when collision experiments are used to explore nature at the subatomic level.

Determining the final velocity of an unseen object from the scattering of another object

Suppose the following experiment is performed. A 0.250-kg object m 1 is slid on a frictionless surface into a dark room, where it strikes an initially stationary object with mass of 0.400 kg m 2 size 12{ left (m rSub { size 8{2} } right )} {} . The 0.250-kg object emerges from the room at an angle of 45 . size 12{"45" "." 0°} {} with its incoming direction.

The speed of the 0.250-kg object is originally 2.00 m/s and is 1.50 m/s after the collision. Calculate the magnitude and direction of the velocity ( v 2 and θ 2 ) of the 0.400-kg object after the collision.

Strategy

Momentum is conserved because the surface is frictionless. The coordinate system shown in [link] is one in which m 2 size 12{m rSub { size 8{2} } } {} is originally at rest and the initial velocity is parallel to the x size 12{x} {} -axis, so that conservation of momentum along the x size 12{x} {} - and y size 12{y} {} -axes is applicable.

Everything is known in these equations except v 2 and θ 2 , which are precisely the quantities we wish to find. We can find two unknowns because we have two independent equations: the equations describing the conservation of momentum in the x - and y -directions.

Solution

Solving m 1 v 1 = m 1 v 1 cos θ 1 + m 2 v 2 cos θ 2 for v 2 cos θ 2 and 0 = m 1 v 1 sin θ 1 + m 2 v 2 sin θ 2 for v 2 sin θ 2 and taking the ratio yields an equation (in which θ 2 is the only unknown quantity. Applying the identity tan θ = sin θ cos θ , we obtain:

tan θ 2 = v 1 sin θ 1 v 1 cos θ 1 v 1 .

Entering known values into the previous equation gives

tan θ 2 = 1 . 50 m/s 0 . 7071 1 . 50 m/s 0 . 7071 2 . 00 m/s = 1 . 129 . size 12{"tan"θ rSub { size 8{2} } = { { left (1 "." "50"" m/s" right ) left (0 "." "7071" right )} over { left (1 "." "50"" m/s" right ) left (0 "." "7071" right ) - 2 "." "00" "m/s"} } = - 1 "." "129"} {}

Thus,

θ 2 = tan 1 1 . 129 = 311 . 312º . size 12{θ rSub { size 8{2} } ="tan" rSup { size 8{ - 1} } left ( - 1 "." "129" right )="311" "." 5° approx "312"°} {}

Angles are defined as positive in the counter clockwise direction, so this angle indicates that m 2 is scattered to the right in [link] , as expected (this angle is in the fourth quadrant). Either equation for the x - or y -axis can now be used to solve for v 2 , but the latter equation is easiest because it has fewer terms.

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask