<< Chapter < Page Chapter >> Page >

Solution for (b)

Rotational kinetic energy is given by

KE rot = 1 2 2 . size 12{"KE" rSub { size 8{"rot"} } = { {1} over {2} } Iω rSup { size 8{2} } } {}

The initial value is found by substituting known values into the equation and converting the angular velocity to rad/s:

KE rot = ( 0 . 5 ) 2 . 34 kg m 2 0 . 800 rev/s rad/rev 2 = 29.6 J.

The final rotational kinetic energy is

KE rot = 1 2 I ω 2 .

Substituting known values into this equation gives

K E rot = 0 . 5 0 .363 kg m 2 5 . 16 rev/s 2π rad/rev 2 = 191 J. alignl { stack { size 12{K { {E}} sup { ' } rSub { size 8{"rot"} } = left (0 "." 5 right ) left (0 "." "363"" kg" cdot m rSup { size 8{2} } right ) left [ left (5 "." "16"" rev/s" right ) left (2π" rad/rev" right ) right ]rSup { size 8{2} } } {} # " "="191"" J" {}} } {}

Discussion

In both parts, there is an impressive increase. First, the final angular velocity is large, although most world-class skaters can achieve spin rates about this great. Second, the final kinetic energy is much greater than the initial kinetic energy. The increase in rotational kinetic energy comes from work done by the skater in pulling in her arms. This work is internal work that depletes some of the skater’s food energy.

There are several other examples of objects that increase their rate of spin because something reduced their moment of inertia. Tornadoes are one example. Storm systems that create tornadoes are slowly rotating. When the radius of rotation narrows, even in a local region, angular velocity increases, sometimes to the furious level of a tornado. Earth is another example. Our planet was born from a huge cloud of gas and dust, the rotation of which came from turbulence in an even larger cloud. Gravitational forces caused the cloud to contract, and the rotation rate increased as a result. (See [link] .)

The first figure shows a cloud of dust and gas,which is in the shape of a distorted circle, rotating in anti-clockwise direction with an angular velocity omega, indicated by a curved black arrow, and having an angular momentum L. The second figure shows an elliptical cloud of dust with the Sun in the middle of it, rotating in anti-clockwise direction with an angular velocity omega dash, indicated by a curved black arrow, and having an angular momentum L. The third figure depicts the Solar System, with the Sun in the middle of it and the various planets revolve around it in their respective elliptical orbits in anti-clockwise direction, which is indicated by arrows. The angular momentum remains L.
The Solar System coalesced from a cloud of gas and dust that was originally rotating. The orbital motions and spins of the planets are in the same direction as the original spin and conserve the angular momentum of the parent cloud.

In case of human motion, one would not expect angular momentum to be conserved when a body interacts with the environment as its foot pushes off the ground. Astronauts floating in space aboard the International Space Station have no angular momentum relative to the inside of the ship if they are motionless. Their bodies will continue to have this zero value no matter how they twist about as long as they do not give themselves a push off the side of the vessel.

Is angular momentum completely analogous to linear momentum? What, if any, are their differences?

Yes, angular and linear momentums are completely analogous. While they are exact analogs they have different units and are not directly inter-convertible like forms of energy are.

Got questions? Get instant answers now!

Section summary

  • Every rotational phenomenon has a direct translational analog , likewise angular momentum L size 12{L} {} can be defined as L = . size 12{L=Iω} {}
  • This equation is an analog to the definition of linear momentum as p = mv size 12{p= ital "mv"} {} . The relationship between torque and angular momentum is net τ = Δ L Δ t . size 12{"net "τ= { {ΔL} over {Δt} } } {}
  • Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of underlying unity in physical laws. Angular momentum is conserved when net external torque is zero, just as linear momentum is conserved when the net external force is zero.

Conceptual questions

When you start the engine of your car with the transmission in neutral, you notice that the car rocks in the opposite sense of the engine’s rotation. Explain in terms of conservation of angular momentum. Is the angular momentum of the car conserved for long (for more than a few seconds)?

Got questions? Get instant answers now!

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask