<< Chapter < Page Chapter >> Page >

Capacitors in parallel

[link] (a) shows a parallel connection of three capacitors with a voltage applied. Here the total capacitance is easier to find than in the series case. To find the equivalent total capacitance C p size 12{ {C} rSub { size 8{p} } } {} , we first note that the voltage across each capacitor is V size 12{V} {} , the same as that of the source, since they are connected directly to it through a conductor. (Conductors are equipotentials, and so the voltage across the capacitors is the same as that across the voltage source.) Thus the capacitors have the same charges on them as they would have if connected individually to the voltage source. The total charge Q size 12{Q} {} is the sum of the individual charges:

Q = Q 1 + Q 2 + Q 3 . size 12{Q= {Q} rSub { size 8{1} } + {Q} rSub { size 8{2} } + {Q} rSub { size 8{3} } } {}
Part a of the figure shows three capacitors connected in parallel to each other and to the applied voltage. The total capacitance when they are connected in parallel is simply the sum of the individual capacitances. Part b of the figure shows the larger equivalent plate area of the capacitors connected in parallel, which in turn can hold more charge than the individual capacitors.
(a) Capacitors in parallel. Each is connected directly to the voltage source just as if it were all alone, and so the total capacitance in parallel is just the sum of the individual capacitances. (b) The equivalent capacitor has a larger plate area and can therefore hold more charge than the individual capacitors.

Using the relationship Q = CV size 12{Q= ital "CV"} {} , we see that the total charge is Q = C p V size 12{Q= {C} rSub { size 8{p} } V} {} , and the individual charges are Q 1 = C 1 V size 12{ {Q} rSub { size 8{1} } = {C} rSub { size 8{1} } V} {} , Q 2 = C 2 V size 12{ {Q} rSub { size 8{2} } = {C} rSub { size 8{2} } V} {} , and Q 3 = C 3 V size 12{ {Q} rSub { size 8{3} } = {C} rSub { size 8{3} } V} {} . Entering these into the previous equation gives

C p V = C 1 V + C 2 V + C 3 V . size 12{ {C} rSub { size 8{p} } V= {C} rSub { size 8{1} } V+ {C} rSub { size 8{2} } V+ {C} rSub { size 8{3} } V} {}

Canceling V size 12{V} {} from the equation, we obtain the equation for the total capacitance in parallel C p size 12{C rSub { size 8{p} } } {} :

C p = C 1 + C 2 + C 3 + . . . . size 12{ {C} rSub { size 8{p} } = {C} rSub { size 8{1} } + {C} rSub { size 8{2} } + {C} rSub { size 8{3} } + "." "." "." } {}

Total capacitance in parallel is simply the sum of the individual capacitances. (Again the “ ... ” indicates the expression is valid for any number of capacitors connected in parallel.) So, for example, if the capacitors in the example above were connected in parallel, their capacitance would be

C p = 1 . 000 µF + 5 . 000 µF + 8 . 000 µF = 14 . 000 µF . size 12{ {C} rSub { size 8{p} } =1 "." "00" µF+5 "." "00" µF+8 "." "00" µF="14" "." 0 µF} {}

The equivalent capacitor for a parallel connection has an effectively larger plate area and, thus, a larger capacitance, as illustrated in [link] (b).

Total capacitance in parallel, C p size 12{C rSub { size 8{p} } } {}

Total capacitance in parallel C p = C 1 + C 2 + C 3 + . . . size 12{ {C} rSub { size 8{p} } = {C} rSub { size 8{1} } + {C} rSub { size 8{2} } + {C} rSub { size 8{3} } + "." "." "." } {}

More complicated connections of capacitors can sometimes be combinations of series and parallel. (See [link] .) To find the total capacitance of such combinations, we identify series and parallel parts, compute their capacitances, and then find the total.

The first figure has two capacitors, C sub1 and C sub2 in series and the third capacitor C sub 3 is parallel to C sub 1 and C sub 2. The second figure shows C sub S, the equivalent capacitance of C sub 1 and C sub 2, in parallel to C sub 3. The third figure represents the total capacitance of C sub S and C sub 3.
(a) This circuit contains both series and parallel connections of capacitors. See [link] for the calculation of the overall capacitance of the circuit. (b) C 1 size 12{ {C} rSub { size 8{1} } } {} and C 2 size 12{ {C} rSub { size 8{2} } } {} are in series; their equivalent capacitance C S size 12{ {C} rSub { size 8{S} } } {} is less than either of them. (c) Note that C S size 12{ {C} rSub { size 8{S} } } {} is in parallel with C 3 size 12{ {C} rSub { size 8{3} } } {} . The total capacitance is, thus, the sum of C S size 12{ {C} rSub { size 8{S} } } {} and C 3 size 12{ {C} rSub { size 8{3} } } {} .

A mixture of series and parallel capacitance

Find the total capacitance of the combination of capacitors shown in [link] . Assume the capacitances in [link] are known to three decimal places ( C 1 = 1.000 µF , C 2 = 5.000 µF , and C 3 = 8.000 µF ), and round your answer to three decimal places.

Strategy

To find the total capacitance, we first identify which capacitors are in series and which are in parallel. Capacitors C 1 size 12{ {C} rSub { size 8{1} } } {} and C 2 size 12{ {C} rSub { size 8{2} } } {} are in series. Their combination, labeled C S size 12{ {C} rSub { size 8{S} } } {} in the figure, is in parallel with C 3 size 12{ {C} rSub { size 8{3} } } {} .

Solution

Since C 1 size 12{ {C} rSub { size 8{1} } } {} and C 2 size 12{ {C} rSub { size 8{2} } } {} are in series, their total capacitance is given by 1 C S = 1 C 1 + 1 C 2 + 1 C 3 size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } } {} . Entering their values into the equation gives

1 C S = 1 C 1 + 1 C 2 = 1 1 . 000 μF + 1 5 . 000 μF = 1 . 200 μF . size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } = { {1} over {1 "." "000"" μF"} } + { {1} over {5 "." "000"" μF"} } = { {1 "." "200"} over {"μF"} } } {}

Inverting gives

C S = 0 . 833 µF . size 12{ {C} rSub { size 8{S} } =0 "." "833" µF} {}

This equivalent series capacitance is in parallel with the third capacitor; thus, the total is the sum

C tot = C S + C S = 0 . 833 μF + 8 . 000 μF = 8 . 833 μF . alignl { stack { size 12{C rSub { size 8{"tot"} } =C rSub { size 8{S} } +C rSub { size 8{S} } } {} #=0 "." "833"" μF "+ 8 "." "000"" μF" {} # =8 "." "833"" μF" {}} } {}

Discussion

This technique of analyzing the combinations of capacitors piece by piece until a total is obtained can be applied to larger combinations of capacitors.

Got questions? Get instant answers now!

Section summary

  • Total capacitance in series 1 C S = 1 C 1 + 1 C 2 + 1 C 3 + . . . size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } + "." "." "." } {}
  • Total capacitance in parallel C p = C 1 + C 2 + C 3 + . . . size 12{ {C} rSub { size 8{p} } = {C} rSub { size 8{1} } + {C} rSub { size 8{2} } + {C} rSub { size 8{3} } + "." "." "." } {}
  • If a circuit contains a combination of capacitors in series and parallel, identify series and parallel parts, compute their capacitances, and then find the total.

Conceptual questions

If you wish to store a large amount of energy in a capacitor bank, would you connect capacitors in series or parallel? Explain.

Got questions? Get instant answers now!

Problems&Exercises

Find the total capacitance of the combination of capacitors in [link] .

A circuit is shown with three capacitors. Two capacitors, of ten microfarad and two point five microfarad capacitance, are in parallel to each other, and their combination is in series with a zero point three zero microfarad capacitor.
A combination of series and parallel connections of capacitors.

0.293 μF

Got questions? Get instant answers now!

Suppose you want a capacitor bank with a total capacitance of 0.750 F and you possess numerous 1.50 mF capacitors. What is the smallest number you could hook together to achieve your goal, and how would you connect them?

Got questions? Get instant answers now!

What total capacitances can you make by connecting a 5 . 00 µF size 12{8 "." "00" mF} {} and an 8 . 00 µF size 12{8 "." "00" mF} {} capacitor together?

3 . 08 µF size 12{3 "." "08" µF } {} in series combination, 13 . 0 µF size 12{"13" "." "0 "µF} {} in parallel combination

Got questions? Get instant answers now!

Find the total capacitance of the combination of capacitors shown in [link] .

The circuit includes three capacitors. A zero point three zero microfarad capacitor and a ten microfarad capacitor are connected in series, and together they are connected in parallel with a two point five microfarad capacitor.
A combination of series and parallel connections of capacitors.

2 . 79 µF size 12{2 "." "79"" µF"} {}

Got questions? Get instant answers now!

Find the total capacitance of the combination of capacitors shown in [link] .

The figure shows a circuit that is a combination of series and parallel connections of capacitors. On the left of the circuit is a five point zero microfarad capacitor in series with a three point five microfarad capacitor. In the middle is an eight point zero microfarad capacitor. On the right, a zero point seven five microfarad capacitor is in parallel with a fifteen microfarad capacitor, and together they are in series with a one point five microfarad capacitor. Altogether, the system of capacitors on the left, the capacitor in the middle, and the system of capacitors on the right are connected in parallel.
A combination of series and parallel connections of capacitors.
Got questions? Get instant answers now!

Unreasonable Results

(a) An 8 . 00 µF size 12{8 "." "00" mF} {} capacitor is connected in parallel to another capacitor, producing a total capacitance of 5 . 00 µF size 12{5 "." "00" mF} {} . What is the capacitance of the second capacitor? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?

(a) –3 . 00 µF size 12{8 "." "00" mF} {}

(b) You cannot have a negative value of capacitance.

(c) The assumption that the capacitors were hooked up in parallel, rather than in series, was incorrect. A parallel connection always produces a greater capacitance, while here a smaller capacitance was assumed. This could happen only if the capacitors are connected in series.

Got questions? Get instant answers now!

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask