<< Chapter < Page Chapter >> Page >

Note that although the resistance in the circuit considered is negligible, the AC current is not extremely large because inductive reactance impedes its flow. With AC, there is no time for the current to become extremely large.

Capacitors and capacitive reactance

Consider the capacitor connected directly to an AC voltage source as shown in [link] . The resistance of a circuit like this can be made so small that it has a negligible effect compared with the capacitor, and so we can assume negligible resistance. Voltage across the capacitor and current are graphed as functions of time in the figure.

Part a of the figure shows a capacitor C connected across an A C voltage source V. The voltage across the capacitor is given by V C. Part b of the diagram shows a graph for the variation of current and voltage across the capacitor as functions of time. The voltage V C and current I C is plotted along the Y axis and the time t is along the X axis. The graph for current is a progressive sine wave from the origin starting with a wave along the negative Y axis. The graph for voltage is a cosine wave and amplitude slightly less than the current wave.
(a) An AC voltage source in series with a capacitor C having negligible resistance. (b) Graph of current and voltage across the capacitor as functions of time.

The graph in [link] starts with voltage across the capacitor at a maximum. The current is zero at this point, because the capacitor is fully charged and halts the flow. Then voltage drops and the current becomes negative as the capacitor discharges. At point a, the capacitor has fully discharged ( Q = 0 size 12{Q=0} {} on it) and the voltage across it is zero. The current remains negative between points a and b, causing the voltage on the capacitor to reverse. This is complete at point b, where the current is zero and the voltage has its most negative value. The current becomes positive after point b, neutralizing the charge on the capacitor and bringing the voltage to zero at point c, which allows the current to reach its maximum. Between points c and d, the current drops to zero as the voltage rises to its peak, and the process starts to repeat. Throughout the cycle, the voltage follows what the current is doing by one-fourth of a cycle:

Ac voltage in a capacitor

When a sinusoidal voltage is applied to a capacitor, the voltage follows the current by one-fourth of a cycle, or by a 90º phase angle.

The capacitor is affecting the current, having the ability to stop it altogether when fully charged. Since an AC voltage is applied, there is an rms current, but it is limited by the capacitor. This is considered to be an effective resistance of the capacitor to AC, and so the rms current I size 12{I} {} in the circuit containing only a capacitor C size 12{C} {} is given by another version of Ohm’s law to be

I = V X C , size 12{I= { {V} over {X rSub { size 8{C} } } } } {}

where V size 12{V} {} is the rms voltage and X C size 12{X rSub { size 8{C} } } {} is defined (As with X L size 12{X rSub { size 8{L} } } {} , this expression for X C size 12{X rSub { size 8{C} } } {} results from an analysis of the circuit using Kirchhoff’s rules and calculus) to be

X C = 1 fC , size 12{X rSub { size 8{C} } = { {1} over {2π ital "fC"} } } {}

where X C size 12{X rSub { size 8{C} } } {} is called the capacitive reactance    , because the capacitor reacts to impede the current. X C size 12{X rSub { size 8{C} } } {} has units of ohms (verification left as an exercise for the reader). X C size 12{X rSub { size 8{C} } } {} is inversely proportional to the capacitance C size 12{C} {} ; the larger the capacitor, the greater the charge it can store and the greater the current that can flow. It is also inversely proportional to the frequency f size 12{f} {} ; the greater the frequency, the less time there is to fully charge the capacitor, and so it impedes current less.

Calculating capacitive reactance and then current

(a) Calculate the capacitive reactance of a 5.00 mF capacitor when 60.0 Hz and 10.0 kHz AC voltages are applied. (b) What is the rms current if the applied rms voltage is 120 V?

Strategy

The capacitive reactance is found directly from the expression in X C = 1 fC size 12{X rSub { size 8{C} } = { {1} over {2π ital "fC"} } } {} . Once X C has been found at each frequency, Ohm’s law stated as I = V / X C size 12{I=V/X rSub { size 8{C} } } {} can be used to find the current at each frequency.

Solution for (a)

Entering the frequency and capacitance into X C = 1 fC size 12{X rSub { size 8{C} } = { {1} over {2π ital "fC"} } } {} gives

X C = 1 fC = 1 6 . 28 ( 60 . 0 / s ) ( 5 . 00  μ F ) = 531 Ω at 60 Hz . alignl { stack { size 12{X rSub { size 8{C} } = { {1} over {2π ital "fC"} } } {} #" "= { {1} over {6 "." "28" \( "60" "." 0/s \) \( 5 "." "00" μF \) } } ="531 " %OMEGA " at 60 Hz" {} } } {}

Similarly, at 10 kHz,

X C = 1 fC = 1 6 . 28 ( 1 . 00 × 10 4 / s ) ( 5 . 00  μ F ) = 3.18 Ω at 10 kHz . alignl { stack { size 12{X rSub { size 8{C} } = { {1} over {2π ital "fC"} } = { {1} over {6 "." "28" \( 1 "." "00" times "10" rSup { size 8{4} } /s \) \( 5 "." "00" μF \) } } } {} #" "=3 "." "18" %OMEGA " at 10 kHz" {} } } {}

Solution for (b)

The rms current is now found using the version of Ohm’s law in I = V / X C size 12{I=V/X rSub { size 8{C} } } {} , given the applied rms voltage is 120 V. For the first frequency, this yields

I = V X C = 120 V 531 Ω = 0.226 A at 60 Hz . size 12{I= { {V} over {X rSub { size 8{C} } } } = { {"120"" V"} over {"531 " %OMEGA } } =0 "." "226"" A"} {}

Similarly, at 10 kHz,

I = V X C = 120 V 3.18 Ω = 37.7 A at 10 kHz . size 12{I= { {V} over {X rSub { size 8{C} } } } = { {"120"" V"} over {3 "." "18 " %OMEGA } } ="37" "." 7" A"} {}

Discussion

The capacitor reacts very differently at the two different frequencies, and in exactly the opposite way an inductor reacts. At the higher frequency, its reactance is small and the current is large. Capacitors favor change, whereas inductors oppose change. Capacitors impede low frequencies the most, since low frequency allows them time to become charged and stop the current. Capacitors can be used to filter out low frequencies. For example, a capacitor in series with a sound reproduction system rids it of the 60 Hz hum.

Got questions? Get instant answers now!

Questions & Answers

it is the relatively stable flow of income
Chidubem Reply
what is circular flow of income
Divine Reply
branches of macroeconomics
SHEDRACK Reply
what is Flexible exchang rate?
poudel Reply
is gdp a reliable measurement of wealth
Atega Reply
introduction to econometrics
Husseini Reply
Hi
mostafa
hi
LEMLEM
hello
Sammol
hi
Mahesh
bi
Ruqayat
hi
Ruqayat
Hi fellas
Nyawa
hey
Sammol
hi
God
hello
Jahara
Good morning
Jorge
hi
abubakar
hi
Nmesoma
hi
Mahesh
Hi
Tom
Why is unemployment rate never zero at full employment?
Priyanka Reply
bcoz of existence of frictional unemployment in our economy.
Umashankar
what is flexible exchang rate?
poudel
due to existence of the pple with disabilities
Abdulraufu
the demand of a good rises, causing the demand for another good to fall
Rushawn Reply
is it possible to leave every good at the same level
Joseph
I don't think so. because check it, if the demand for chicken increases, people will no longer consume fish like they used to causing a fall in the demand for fish
Anuolu
is not really possible to let the value of a goods to be same at the same time.....
Salome
Suppose the inflation rate is 6%, does it mean that all the goods you purchase will cost 6% more than previous year? Provide with reasoning.
Geetha Reply
Not necessarily. To measure the inflation rate economists normally use an averaged price index of a basket of certain goods. So if you purchase goods included in the basket, you will notice that you pay 6% more, otherwise not necessarily.
Waeth
discus major problems of macroeconomics
Alii Reply
what is the problem of macroeconomics
Yoal
Economic growth Stable prices and low unemployment
Ephraim
explain inflationcause and itis degre
Miresa Reply
what is inflation
Getu
increase in general price levels
WEETO
Good day How do I calculate this question: C= 100+5yd G= 2000 T= 2000 I(planned)=200. Suppose the actual output is 3000. What is the level of planned expenditures at this level of output?
Chisomo Reply
how to calculate actual output?
Chisomo
how to calculate the equilibrium income
Beshir
Criteria for determining money supply
Thapase Reply
who we can define macroeconomics in one line
Muhammad
Aggregate demand
Mohammed
C=k100 +9y and i=k50.calculate the equilibrium level of output
Mercy Reply
Hi
Isiaka
Hi
Geli
hy
Man
👋
Bahunda
hy how are you?
Man
ys
Amisha
how are you guys
Sekou
f9 guys
Amisha
how are you guys
Sekou
ys am also fine
Amisha
fine and you guys
Geli
from Nepal
Amisha
nawalparasi district from belatari
Amisha
nd u
Amisha
I am Camara from Guinea west Africa... happy to meet you guys here
Sekou
ma management ho
Amisha
ahile becheclor ho
Amisha
hjr ktm bta ho ani k kaam grnu hunxa tw
Amisha
belatari
Amisha
1st year ho
Amisha
nd u
Amisha
ahh
Amisha
kaha biratnagar
Amisha
ys
Amisha
kina k vo
Amisha
money as unit of account means what?
Kalombe
A unit of account is something that can be used to value goods and services and make calculations
Jim
all of you please speak in English I can't understand you're language
Muhammad
I want to know how can we define macroeconomics in one line
Muhammad
it must be .9 or 0.9 no Mpc is greater than 1 Y=100+.9Y+50 Y-.9Y=150 0.1Y/0.1=150/0.1 Y=1500
Kalombe
Mercy is it clear?😋
Kalombe
hi can someone help me on this question If a negative shocks shifts the IS curve to the left, what type of policy do you suggest so as to stabilize the level of output? discuss your answer using appropriate graph.
Galge Reply
if interest rate is increased this will will reduce the level of income shifting the curve to the left ◀️
Kalombe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask