<< Chapter < Page Chapter >> Page >
  • Describe an elastic collision of two objects in one dimension.
  • Define internal kinetic energy.
  • Derive an expression for conservation of internal kinetic energy in a one dimensional collision.
  • Determine the final velocities in an elastic collision given masses and initial velocities.

Let us consider various types of two-object collisions. These collisions are the easiest to analyze, and they illustrate many of the physical principles involved in collisions. The conservation of momentum principle is very useful here, and it can be used whenever the net external force on a system is zero.

We start with the elastic collision of two objects moving along the same line—a one-dimensional problem. An elastic collision    is one that also conserves internal kinetic energy. Internal kinetic energy is the sum of the kinetic energies of the objects in the system. [link] illustrates an elastic collision in which internal kinetic energy and momentum are conserved.

Truly elastic collisions can only be achieved with subatomic particles, such as electrons striking nuclei. Macroscopic collisions can be very nearly, but not quite, elastic—some kinetic energy is always converted into other forms of energy such as heat transfer due to friction and sound. One macroscopic collision that is nearly elastic is that of two steel blocks on ice. Another nearly elastic collision is that between two carts with spring bumpers on an air track. Icy surfaces and air tracks are nearly frictionless, more readily allowing nearly elastic collisions on them.

Elastic collision

An elastic collision    is one that conserves internal kinetic energy.

Internal kinetic energy

Internal kinetic energy is the sum of the kinetic energies of the objects in the system.

The system of interest contains a smaller mass m sub1 and a larger mass m sub2 moving on a frictionless surface. M sub 2 moves with velocity V sub 2 and momentum p sub 2 and m sub 1 moves behind m sub 2, with velocity V sub 1 and momentum p sub 1 toward the right direction. P 1 plus P 2 equals p total. The net force is zero. After collision m sub 1 moves toward the left with velocity V sub 1 while m sub 2 moves toward the right with velocity V sub 2 on the same frictionless surface. The momentum of m sub 1 becomes p 1 prime and m 2 becomes p 2 prime now. P 1 prime plus p 2 prime equals p total.
An elastic one-dimensional two-object collision. Momentum and internal kinetic energy are conserved.

Now, to solve problems involving one-dimensional elastic collisions between two objects we can use the equations for conservation of momentum and conservation of internal kinetic energy. First, the equation for conservation of momentum for two objects in a one-dimensional collision is

p 1 + p 2 = p 1 + p 2 F net = 0 size 12{ left (F rSub { size 8{"net"} } =0 right )} {}

or

m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v 2 F net = 0 , size 12{ left (F rSub { size 8{"net"} } =0 right )} {}

where the primes (') indicate values after the collision. By definition, an elastic collision conserves internal kinetic energy, and so the sum of kinetic energies before the collision equals the sum after the collision. Thus,

1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 = 1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 (two-object elastic collision)

expresses the equation for conservation of internal kinetic energy in a one-dimensional collision.

Calculating velocities following an elastic collision

Calculate the velocities of two objects following an elastic collision, given that

m 1 = 0 . 500 kg, m 2 = 3 . 50 kg, v 1 = 4 . 00 m/s, and v 2 = 0 . size 12{m rSub { size 8{1} } =0 "." "500"" kg, "m rSub { size 8{2} } =3 "." "50"" kg, "v rSub { size 8{1} } =4 "." "00"" m/s, and "v rSub { size 8{2} } =0 "." } {}

Strategy and Concept

First, visualize what the initial conditions mean—a small object strikes a larger object that is initially at rest. This situation is slightly simpler than the situation shown in [link] where both objects are initially moving. We are asked to find two unknowns (the final velocities v 1 and v 2 size 12{v rSub { size 8{2} } '} {} ). To find two unknowns, we must use two independent equations. Because this collision is elastic, we can use the above two equations. Both can be simplified by the fact that object 2 is initially at rest, and thus v 2 = 0 size 12{v rSub { size 8{2} } =0} {} . Once we simplify these equations, we combine them algebraically to solve for the unknowns.

Questions & Answers

material that allows electric current to pass through
Deng Reply
material which don't allow electric current is called
Deng
insulators
Covenant
how to study physic and understand
Ewa Reply
what is conservative force with examples
Moses
what is work
Fredrick Reply
the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the direction of the displacement and the magnitude of the displacement
AI-Robot
why is it from light to gravity
Esther Reply
difference between model and theory
Esther
Is the ship moving at a constant velocity?
Kamogelo Reply
The full note of modern physics
aluet Reply
introduction to applications of nuclear physics
aluet Reply
the explanation is not in full details
Moses Reply
I need more explanation or all about kinematics
Moses
yes
zephaniah
I need more explanation or all about nuclear physics
aluet
Show that the equal masses particles emarge from collision at right angle by making explicit used of fact that momentum is a vector quantity
Muhammad Reply
yh
Isaac
A wave is described by the function D(x,t)=(1.6cm) sin[(1.2cm^-1(x+6.8cm/st] what are:a.Amplitude b. wavelength c. wave number d. frequency e. period f. velocity of speed.
Majok Reply
what is frontier of physics
Somto Reply
A body is projected upward at an angle 45° 18minutes with the horizontal with an initial speed of 40km per second. In hoe many seconds will the body reach the ground then how far from the point of projection will it strike. At what angle will the horizontal will strike
Gufraan Reply
Suppose hydrogen and oxygen are diffusing through air. A small amount of each is released simultaneously. How much time passes before the hydrogen is 1.00 s ahead of the oxygen? Such differences in arrival times are used as an analytical tool in gas chromatography.
Ezekiel Reply
please explain
Samuel
what's the definition of physics
Mobolaji Reply
what is physics
Nangun Reply
the science concerned with describing the interactions of energy, matter, space, and time; it is especially interested in what fundamental mechanisms underlie every phenomenon
AI-Robot
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask