<< Chapter < Page Chapter >> Page >
KE rot = 1 2 2 . size 12{"KE" rSub { size 8{"rot"} } = { {1} over {2} } Iω rSup { size 8{2} } } {}

The expression for rotational kinetic energy is exactly analogous to translational kinetic energy, with I size 12{I} {} being analogous to m size 12{m} {} and ω size 12{ω} {} to v size 12{v} {} . Rotational kinetic energy has important effects. Flywheels, for example, can be used to store large amounts of rotational kinetic energy in a vehicle, as seen in [link] .

The figure shows a bus carrying a large flywheel on its board in which rotational kinetic energy is stored.
Experimental vehicles, such as this bus, have been constructed in which rotational kinetic energy is stored in a large flywheel. When the bus goes down a hill, its transmission converts its gravitational potential energy into KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} . It can also convert translational kinetic energy, when the bus stops, into KE rot size 12{ ital "KE" rSub { size 8{ ital "rot"} } } {} . The flywheel’s energy can then be used to accelerate, to go up another hill, or to keep the bus from going against friction.

Calculating the work and energy for spinning a grindstone

Consider a person who spins a large grindstone by placing her hand on its edge and exerting a force through part of a revolution as shown in [link] . In this example, we verify that the work done by the torque she exerts equals the change in rotational energy. (a) How much work is done if she exerts a force of 200 N through a rotation of 1.00 rad ( 57.3º ) size 12{1 "." "00"`"rad" \( "57" "." 3 \) rSup { size 8{ circ } } } {} ? The force is kept perpendicular to the grindstone’s 0.320-m radius at the point of application, and the effects of friction are negligible. (b) What is the final angular velocity if the grindstone has a mass of 85.0 kg? (c) What is the final rotational kinetic energy? (It should equal the work.)

Strategy

To find the work, we can use the equation net W = net τ θ size 12{"net "W= left ("net "τ right )θ} {} . We have enough information to calculate the torque and are given the rotation angle. In the second part, we can find the final angular velocity using one of the kinematic relationships. In the last part, we can calculate the rotational kinetic energy from its expression in KE rot = 1 2 2 size 12{"KE" rSub { size 8{"rot"} } = { {1} over {2} } Iω rSup { size 8{2} } } {} .

Solution for (a)

The net work is expressed in the equation

net W = net τ θ , size 12{"net "W= left ("net "τ right )θ} {}

where net τ size 12{τ} {} is the applied force multiplied by the radius ( rF ) size 12{ \( ital "rF" \) } {} because there is no retarding friction, and the force is perpendicular to r size 12{r} {} . The angle θ size 12{θ} {} is given. Substituting the given values in the equation above yields

net W = rF θ = 0.320 m 200 N 1.00 rad = 64.0 N m.

Noting that 1 N · m = 1 J ,

net W = 64.0 J . size 12{"net "W="64" "." 0" J"} {}
The figure shows a large grindstone of radius r which is being given a spin by applying a force F in a counterclockwise direction, as indicated by the arrows.
A large grindstone is given a spin by a person grasping its outer edge.

Solution for (b)

To find ω size 12{ω} {} from the given information requires more than one step. We start with the kinematic relationship in the equation

ω 2 = ω 0 2 + 2 αθ . size 12{ω rSup { size 8{2} } =ω rSub { size 8{0} rSup { size 8{2} } } +2 ital "αθ"} {}

Note that ω 0 = 0 size 12{ω rSub { size 8{0} } =0} {} because we start from rest. Taking the square root of the resulting equation gives

ω = 2 αθ 1 / 2 . size 12{ω= left (2 ital "αθ" right ) rSup { size 8{1/2} } } {}

Now we need to find α size 12{α} {} . One possibility is

α = net τ I , size 12{α= { {"net "τ} over {I} } } {}

where the torque is

net τ = rF = 0.320 m 200 N = 64.0 N m . size 12{"net "τ= ital "rF"= left (0 "." "320"" m" right ) left ("200"" N" right )="64" "." 0" N" cdot m} {}

The formula for the moment of inertia for a disk is found in [link] :

I = 1 2 MR 2 = 0.5 85.0 kg 0.320 m 2 = 4.352 kg m 2 . size 12{I= { {1} over {2} } ital "MR" rSup { size 8{2} } =0 "." 5 left ("85" "." 0" kg" right ) left (0 "." "320"" m" right ) rSup { size 8{2} } =4 "." "352"" kg" cdot m rSup { size 8{2} } } {}

Substituting the values of torque and moment of inertia into the expression for α size 12{α} {} , we obtain

α = 64 . 0 N m 4.352 kg m 2 = 14.7 rad s 2 . size 12{α= { {"64" "." "0 N" cdot m} over {4 "." "352"" kg" cdot m rSup { size 8{2} } } } ="14" "." 7 { {"rad"} over {s rSup { size 8{2} } } } } {}

Now, substitute this value and the given value for θ size 12{θ} {} into the above expression for ω size 12{ω} {} :

ω = 2 αθ 1 / 2 = 2 14.7 rad s 2 1.00 rad 1 / 2 = 5.42 rad s . size 12{ω= left (2 ital "αθ" right ) rSup { size 8{1/2} } = left [2 left ("14" "." 7 { {"rad"} over {s rSup { size 8{2} } } } right ) left (1 "." "00"" rad" right ) right ] rSup { size 8{1/2} } =5 "." "42" { {"rad"} over {s} } } {}

Solution for (c)

The final rotational kinetic energy is

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask