<< Chapter < Page Chapter >> Page >

What we have here is, in fact, another conservation law. If the net torque is zero , then angular momentum is constant or conserved . We can see this rigorously by considering net τ = Δ L Δ t size 12{"net "τ= { {ΔL} over {Δt} } } {} for the situation in which the net torque is zero. In that case,

net τ = 0 size 12{"net "τ=0} {}

implying that

Δ L Δ t = 0 . size 12{ { {ΔL} over {Δt} } =0} {}

If the change in angular momentum Δ L size 12{ΔL} {} is zero, then the angular momentum is constant; thus,

L = constant net τ = 0 size 12{L="constant " left ("net "τ=0 right )} {}

or

L = L net τ = 0 . size 12{L=L'" " left ("net "τ=0 right )} {}

These expressions are the law of conservation of angular momentum    . Conservation laws are as scarce as they are important.

An example of conservation of angular momentum is seen in [link] , in which an ice skater is executing a spin. The net torque on her is very close to zero, because there is relatively little friction between her skates and the ice and because the friction is exerted very close to the pivot point. (Both F size 12{F} {} and r size 12{r} {} are small, and so τ size 12{τ} {} is negligibly small.) Consequently, she can spin for quite some time. She can do something else, too. She can increase her rate of spin by pulling her arms and legs in. Why does pulling her arms and legs in increase her rate of spin? The answer is that her angular momentum is constant, so that

L = L . size 12{L=L'} {}

Expressing this equation in terms of the moment of inertia,

= I ω , size 12{Iω=I'ω'} {}

where the primed quantities refer to conditions after she has pulled in her arms and reduced her moment of inertia. Because I size 12{I'} {} is smaller, the angular velocity ω size 12{ω'} {} must increase to keep the angular momentum constant. The change can be dramatic, as the following example shows.

The image a shows an ice skater spinning on the tip of her skate with both her arms and one leg extended. The image b shows the ice skater spinning on the tip of one skate, with her arms crossed and one leg supported on another.
(a) An ice skater is spinning on the tip of her skate with her arms extended. Her angular momentum is conserved because the net torque on her is negligibly small. In the next image, her rate of spin increases greatly when she pulls in her arms, decreasing her moment of inertia. The work she does to pull in her arms results in an increase in rotational kinetic energy.

Calculating the angular momentum of a spinning skater

Suppose an ice skater, such as the one in [link] , is spinning at 0.800 rev/ s with her arms extended. She has a moment of inertia of 2 . 34 kg m 2 size 12{2 "." "34"`"kg" cdot m rSup { size 8{2} } } {} with her arms extended and of 0 . 363 kg m 2 size 12{0 "." "363"`"kg" cdot m rSup { size 8{2} } } {} with her arms close to her body. (These moments of inertia are based on reasonable assumptions about a 60.0-kg skater.) (a) What is her angular velocity in revolutions per second after she pulls in her arms? (b) What is her rotational kinetic energy before and after she does this?

Strategy

In the first part of the problem, we are looking for the skater’s angular velocity ω size 12{ { {ω}} sup { ' }} {} after she has pulled in her arms. To find this quantity, we use the conservation of angular momentum and note that the moments of inertia and initial angular velocity are given. To find the initial and final kinetic energies, we use the definition of rotational kinetic energy given by

KE rot = 1 2 2 . size 12{"KE" rSub { size 8{"rot"} } = { {1} over {2} } Iω rSup { size 8{2} } } {}

Solution for (a)

Because torque is negligible (as discussed above), the conservation of angular momentum given in = I ω size 12{Iω= { {I}} sup { ' } { {ω}} sup { ' }} {} is applicable. Thus,

L = L size 12{L=L'} {}

or

= I ω size 12{Iω=I'ω'} {}

Solving for ω and substituting known values into the resulting equation gives

ω = I I ω = 2.34 kg m 2 0 .363 kg m 2 0.800 rev/s = 5.16 rev/s.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask