<< Chapter < Page Chapter >> Page >

The forces experienced by particles also govern how particles interact with themselves if they are unstable and decay. For example, the stronger the force, the faster they decay and the shorter is their lifetime. An example of a nuclear decay via the strong force is 8 Be α + α size 12{"" lSup { size 8{8} } "Be" rightarrow α+α} {} with a lifetime of about 10 16 s size 12{"10" rSup { size 8{ - "16"} } `s} {} . The neutron is a good example of decay via the weak force. The process n p + e + v - e size 12{n rightarrow p+e rSup { size 8{ - {}} } + { bar {v}} rSub { size 8{e} } } {} has a longer lifetime of 882 s. The weak force causes this decay, as it does all β size 12{β} {} decay. An important clue that the weak force is responsible for β size 12{β} {} decay is the creation of leptons, such as e size 12{e rSup { size 8{ - {}} } } {} and v - e size 12{ { bar {v}} rSub { size 8{e} } } {} . None would be created if the strong force was responsible, just as no leptons are created in the decay of 8 Be size 12{"" lSup { size 8{8} } "Be"} {} . The systematics of particle lifetimes is a little simpler than nuclear lifetimes when hundreds of particles are examined (not just the ones in the table given above). Particles that decay via the weak force have lifetimes mostly in the range of 10 16 size 12{"10" rSup { size 8{ - "16"} } } {} to 10 12 size 12{"10" rSup { size 8{ - "12"} } } {} s, whereas those that decay via the strong force have lifetimes mostly in the range of 10 16 size 12{"10" rSup { size 8{ - "16"} } } {} to 10 23 size 12{"10" rSup { size 8{ - "23"} } } {} s. Turning this around, if we measure the lifetime of a particle, we can tell if it decays via the weak or strong force.

Yet another quantum number emerges from decay lifetimes and patterns. Note that the particles Λ , Σ , Ξ size 12{Λ,`Σ,`Ξ} {} , and Ω size 12{ %OMEGA } {} decay with lifetimes on the order of 10 10 size 12{"10" rSup { size 8{ - "10"} } } {} s (the exception is Σ 0 size 12{Σ rSup { size 8{0} } } {} , whose short lifetime is explained by its particular quark substructure.), implying that their decay is caused by the weak force alone, although they are hadrons and feel the strong force. The decay modes of these particles also show patterns—in particular, certain decays that should be possible within all the known conservation laws do not occur. Whenever something is possible in physics, it will happen. If something does not happen, it is forbidden by a rule. All this seemed strange to those studying these particles when they were first discovered, so they named a new quantum number strangeness    , given the symbol S size 12{S} {} in the table given above. The values of strangeness assigned to various particles are based on the decay systematics. It is found that strangeness is conserved by the strong force , which governs the production of most of these particles in accelerator experiments. However, strangeness is not conserved by the weak force . This conclusion is reached from the fact that particles that have long lifetimes decay via the weak force and do not conserve strangeness. All of this also has implications for the carrier particles, since they transmit forces and are thus involved in these decays.

Calculating quantum numbers in two decays

(a) The most common decay mode of the Ξ size 12{Ξ rSup { size 8{ - {}} } } {} particle is Ξ Λ 0 + π size 12{Ξ rSup { size 8{ - {}} } rightarrow Λ rSup { size 8{0} } +π rSup { size 8{ - {}} } } {} . Using the quantum numbers in the table given above, show that strangeness changes by 1, baryon number and charge are conserved, and lepton family numbers are unaffected.

(b) Is the decay K + μ + + ν μ size 12{K rSup { size 8{+{}} } rightarrow μ rSup { size 8{+{}} } +ν rSub { size 8{μ} } } {} allowed, given the quantum numbers in the table given above?

Strategy

In part (a), the conservation laws can be examined by adding the quantum numbers of the decay products and comparing them with the parent particle. In part (b), the same procedure can reveal if a conservation law is broken or not.

Questions & Answers

Ayele, K., 2003. Introductory Economics, 3rd ed., Addis Ababa.
Widad Reply
can you send the book attached ?
Ariel
?
Ariel
What is economics
Widad Reply
the study of how humans make choices under conditions of scarcity
AI-Robot
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn Reply
U(x,y) = (x×y)1/2 find mu of x for y
Desalegn
what is ecnomics
Jan Reply
this is the study of how the society manages it's scarce resources
Belonwu
what is macroeconomic
John Reply
macroeconomic is the branch of economics which studies actions, scale, activities and behaviour of the aggregate economy as a whole.
husaini
etc
husaini
difference between firm and industry
husaini Reply
what's the difference between a firm and an industry
Abdul
firm is the unit which transform inputs to output where as industry contain combination of firms with similar production 😅😅
Abdulraufu
Suppose the demand function that a firm faces shifted from Qd  120 3P to Qd  90  3P and the supply function has shifted from QS  20  2P to QS 10  2P . a) Find the effect of this change on price and quantity. b) Which of the changes in demand and supply is higher?
Toofiq Reply
explain standard reason why economic is a science
innocent Reply
factors influencing supply
Petrus Reply
what is economic.
Milan Reply
scares means__________________ends resources. unlimited
Jan
economics is a science that studies human behaviour as a relationship b/w ends and scares means which have alternative uses
Jan
calculate the profit maximizing for demand and supply
Zarshad Reply
Why qualify 28 supplies
Milan
what are explicit costs
Nomsa Reply
out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials
AI-Robot
concepts of supply in microeconomics
David Reply
economic overview notes
Amahle Reply
identify a demand and a supply curve
Salome Reply
i don't know
Parul
there's a difference
Aryan
Demand curve shows that how supply and others conditions affect on demand of a particular thing and what percent demand increase whith increase of supply of goods
Israr
Hi Sir please how do u calculate Cross elastic demand and income elastic demand?
Abari
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask