<< Chapter < Page Chapter >> Page >

The forces experienced by particles also govern how particles interact with themselves if they are unstable and decay. For example, the stronger the force, the faster they decay and the shorter is their lifetime. An example of a nuclear decay via the strong force is 8 Be α + α size 12{"" lSup { size 8{8} } "Be" rightarrow α+α} {} with a lifetime of about 10 16 s size 12{"10" rSup { size 8{ - "16"} } `s} {} . The neutron is a good example of decay via the weak force. The process n p + e + v - e size 12{n rightarrow p+e rSup { size 8{ - {}} } + { bar {v}} rSub { size 8{e} } } {} has a longer lifetime of 882 s. The weak force causes this decay, as it does all β size 12{β} {} decay. An important clue that the weak force is responsible for β size 12{β} {} decay is the creation of leptons, such as e size 12{e rSup { size 8{ - {}} } } {} and v - e size 12{ { bar {v}} rSub { size 8{e} } } {} . None would be created if the strong force was responsible, just as no leptons are created in the decay of 8 Be size 12{"" lSup { size 8{8} } "Be"} {} . The systematics of particle lifetimes is a little simpler than nuclear lifetimes when hundreds of particles are examined (not just the ones in the table given above). Particles that decay via the weak force have lifetimes mostly in the range of 10 16 size 12{"10" rSup { size 8{ - "16"} } } {} to 10 12 size 12{"10" rSup { size 8{ - "12"} } } {} s, whereas those that decay via the strong force have lifetimes mostly in the range of 10 16 size 12{"10" rSup { size 8{ - "16"} } } {} to 10 23 size 12{"10" rSup { size 8{ - "23"} } } {} s. Turning this around, if we measure the lifetime of a particle, we can tell if it decays via the weak or strong force.

Yet another quantum number emerges from decay lifetimes and patterns. Note that the particles Λ , Σ , Ξ size 12{Λ,`Σ,`Ξ} {} , and Ω size 12{ %OMEGA } {} decay with lifetimes on the order of 10 10 size 12{"10" rSup { size 8{ - "10"} } } {} s (the exception is Σ 0 size 12{Σ rSup { size 8{0} } } {} , whose short lifetime is explained by its particular quark substructure.), implying that their decay is caused by the weak force alone, although they are hadrons and feel the strong force. The decay modes of these particles also show patterns—in particular, certain decays that should be possible within all the known conservation laws do not occur. Whenever something is possible in physics, it will happen. If something does not happen, it is forbidden by a rule. All this seemed strange to those studying these particles when they were first discovered, so they named a new quantum number strangeness    , given the symbol S size 12{S} {} in the table given above. The values of strangeness assigned to various particles are based on the decay systematics. It is found that strangeness is conserved by the strong force , which governs the production of most of these particles in accelerator experiments. However, strangeness is not conserved by the weak force . This conclusion is reached from the fact that particles that have long lifetimes decay via the weak force and do not conserve strangeness. All of this also has implications for the carrier particles, since they transmit forces and are thus involved in these decays.

Calculating quantum numbers in two decays

(a) The most common decay mode of the Ξ size 12{Ξ rSup { size 8{ - {}} } } {} particle is Ξ Λ 0 + π size 12{Ξ rSup { size 8{ - {}} } rightarrow Λ rSup { size 8{0} } +π rSup { size 8{ - {}} } } {} . Using the quantum numbers in the table given above, show that strangeness changes by 1, baryon number and charge are conserved, and lepton family numbers are unaffected.

(b) Is the decay K + μ + + ν μ size 12{K rSup { size 8{+{}} } rightarrow μ rSup { size 8{+{}} } +ν rSub { size 8{μ} } } {} allowed, given the quantum numbers in the table given above?

Strategy

In part (a), the conservation laws can be examined by adding the quantum numbers of the decay products and comparing them with the parent particle. In part (b), the same procedure can reveal if a conservation law is broken or not.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask