<< Chapter < Page Chapter >> Page >

Uses for doppler-shifted radar

Doppler-shifted radar echoes are used to measure wind velocities in storms as well as aircraft and automobile speeds. The principle is the same as for Doppler-shifted ultrasound. There is evidence that bats and dolphins may also sense the velocity of an object (such as prey) reflecting their ultrasound signals by observing its Doppler shift.

Calculate velocity of blood: doppler-shifted ultrasound

Ultrasound that has a frequency of 2.50 MHz is sent toward blood in an artery that is moving toward the source at 20.0 cm/s, as illustrated in [link] . Use the speed of sound in human tissue as 1540 m/s. (Assume that the frequency of 2.50 MHz is accurate to seven significant figures.)

  1. What frequency does the blood receive?
  2. What frequency returns to the source?
  3. What beat frequency is produced if the source and returning frequencies are mixed?
The picture represents an ultrasound device scanning the arteries and veins of a human hand.
Ultrasound is partly reflected by blood cells and plasma back toward the speaker-microphone. Because the cells are moving, two Doppler shifts are produced—one for blood as a moving observer, and the other for the reflected sound coming from a moving source. The magnitude of the shift is directly proportional to blood velocity.

Strategy

The first two questions can be answered using f obs = f s v w v w ± v s size 12{f rSub { size 8{"obs"} } =f rSub { size 8{s} } left ( { {v rSub { size 8{w} } } over {v rSub { size 8{w} } +- v rSub { size 8{s} } } } right )} {} and f obs = f s v w ± v obs v w size 12{f rSub { size 8{"obs"} } =f rSub { size 8{s} } left ( { {v rSub { size 8{w} } +- v rSub { size 8{"obs"} } } over {v rSub { size 8{w} } } } right )} {} for the Doppler shift. The last question asks for beat frequency, which is the difference between the original and returning frequencies.

Solution for (a)

(1) Identify knowns:

  • The blood is a moving observer, and so the frequency it receives is given by
    f obs = f s v w ± v obs v w . size 12{f rSub { size 8{"obs"} } =f rSub { size 8{s} } left ( { {v rSub { size 8{w} } +- v rSub { size 8{"obs"} } } over {v rSub { size 8{w} } } } right )} {}
  • v b size 12{v rSub { size 8{b} } } {} is the blood velocity ( v obs size 12{v rSub { size 8{"obs"} } } {} here) and the plus sign is chosen because the motion is toward the source.

(2) Enter the given values into the equation.

f obs = 2, 500 , 000 Hz 1540 m/s + 0 . 2 m/s 1540 m/s size 12{f rSub { size 8{"obs"} } = left (2,"500","000"" Hz" right ) left ( { {"1540"" m/s"+0 "." "2 m/s"} over {"1540 m/s"} } right )} {}

(3) Calculate to find the frequency: 20,500,325 Hz.

Solution for (b)

(1) Identify knowns:

  • The blood acts as a moving source.
  • The microphone acts as a stationary observer.
  • The frequency leaving the blood is 2,500,325 Hz, but it is shifted upward as given by
    f obs = f s v w v w v b . size 12{f rSub { size 8{"obs"} } =f rSub { size 8{s} } left ( { {v rSub { size 8{w} } } over {v rSub { size 8{w} } +- v rSub { size 8{b} } } } right )} {}

    f obs is the frequency received by the speaker-microphone.

  • The source velocity is v b size 12{v rSub { size 8{b} } } {} .
  • The minus sign is used because the motion is toward the observer.

The minus sign is used because the motion is toward the observer.

(2) Enter the given values into the equation:

f obs = 2, 500 , 325 Hz 1540 m/s 1540 m/s 0 . 200 m/s size 12{f rSub { size 8{"obs"} } = left (2,"500","325"" Hz" right ) left ( { {"1540"" m/s"} over {"1540 m/s " - 0 "." "200"" m/s"} } right )} {}

(3) Calculate to find the frequency returning to the source: 2,500,649 Hz.

Solution for (c)

(1) Identify knowns:

  • The beat frequency is simply the absolute value of the difference between f s size 12{f rSub { size 8{s} } } {} and f obs size 12{f rSub { size 8{"obs"} } } {} , as stated in:
    f B = f obs f s .

(2) Substitute known values:

2, 500 , 649 Hz 2, 500 , 000 Hz size 12{ lline 2,"500","649"`"Hz" - 2,"500","000"`"Hz" rline } {}

(3) Calculate to find the beat frequency: 649 Hz.

Discussion

The Doppler shifts are quite small compared with the original frequency of 2.50 MHz. It is far easier to measure the beat frequency than it is to measure the echo frequency with an accuracy great enough to see shifts of a few hundred hertz out of a couple of megahertz. Furthermore, variations in the source frequency do not greatly affect the beat frequency, because both f s size 12{f rSub { size 8{s} } } {} and f obs size 12{f rSub { size 8{"obs"} } } {} would increase or decrease. Those changes subtract out in f B = f obs f s .

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask