<< Chapter < Page Chapter >> Page >

Calculate final temperature from phase change: cooling soda with ice cubes

Three ice cubes are used to chill a soda at 20º C size 12{"20"°C} {} with mass m soda = 0.25  kg . The ice is at C and each ice cube has a mass of 6.0 g. Assume that the soda is kept in a foam container so that heat loss can be ignored. Assume the soda has the same heat capacity as water. Find the final temperature when all ice has melted.

Strategy

The ice cubes are at the melting temperature of C . Heat is transferred from the soda to the ice for melting. Melting of ice occurs in two steps: first the phase change occurs and solid (ice) transforms into liquid water at the melting temperature, then the temperature of this water rises. Melting yields water at C , so more heat is transferred from the soda to this water until the water plus soda system reaches thermal equilibrium,

Q ice = Q soda . size 12{Q rSub { size 8{"ice"} } = - Q rSub { size 8{"soda"} } } {}

The heat transferred to the ice is Q ice = m ice L f + m ice c W ( T f C ) . The heat given off by the soda is Q soda = m soda c W ( T f 20º C ) . Since no heat is lost, Q ice = Q soda , so that

m ice L f + m ice c W T f C = - m soda c W T f 20º C .

Bring all terms involving T f size 12{T rSub { size 8{f} } } {} on the left-hand-side and all other terms on the right-hand-side. Solve for the unknown quantity T f size 12{T rSub { size 8{f} } } {} :

T f = m soda c W 20º C m ice L f ( m soda + m ice ) c W .

Solution

  1. Identify the known quantities. The mass of ice is m ice = 3 × 6.0  g = 0 . 018  kg size 12{m rSub { size 8{"ice"} } =3 "." 6`g=0 "." "018"`"kg"} {} and the mass of soda is m soda = 0 . 25  kg size 12{m rSub { size 8{"soda"} } =0 "." "25"`"kg"} {} .
  2. Calculate the terms in the numerator:
    m soda c W 20º C = 0 .25 kg 4186 J/kg ⋅º C 20º C = 20,930 J

    and

    m ice L f = 0 . 018  kg 334,000  J/kg =6012  J. size 12{ ital "mL" rSub { size 8{f} } = left (0 "." "018"`"kg" right ) left ("333","000"`"J/kg" right )"=5995"`J} {}
  3. Calculate the denominator:
    m soda + m ice c W = 0 . 25  kg + 0 . 018 kg 4186 K/ ( kg ⋅º C =1122 J/º C . size 12{ left (m rSub { size 8{"ice"} } +m rSub { size 8{"soda"} } right )c rSub { size 8{W} } = left (0 "." "25"" kg+0" "." "018 kg" right ) left ("4186 K/" \( "kg" cdot °C right )"=1122 J/"°C} {}
  4. Calculate the final temperature:
    T f = 20 , 930 J 6012 J 1122 J/º C = 13º C.

Discussion

This example illustrates the enormous energies involved during a phase change. The mass of ice is about 7 percent the mass of water but leads to a noticeable change in the temperature of soda. Although we assumed that the ice was at the freezing temperature, this is incorrect: the typical temperature is C . However, this correction gives a final temperature that is essentially identical to the result we found. Can you explain why?

We have seen that vaporization requires heat transfer to a liquid from the surroundings, so that energy is released by the surroundings. Condensation is the reverse process, increasing the temperature of the surroundings. This increase may seem surprising, since we associate condensation with cold objects—the glass in the figure, for example. However, energy must be removed from the condensing molecules to make a vapor condense. The energy is exactly the same as that required to make the phase change in the other direction, from liquid to vapor, and so it can be calculated from Q = mL v size 12{Q= ital "mL" rSub { size 8{f} } } {} .

The figure shows condensed water droplets on a glass of iced tea.
Condensation forms on this glass of iced tea because the temperature of the nearby air is reduced to below the dew point. The rate at which water molecules join together exceeds the rate at which they separate, and so water condenses. Energy is released when the water condenses, speeding the melting of the ice in the glass. (credit: Jenny Downing)

Real-world application

Energy is also released when a liquid freezes. This phenomenon is used by fruit growers in Florida to protect oranges when the temperature is close to the freezing point C . Growers spray water on the plants in orchards so that the water freezes and heat is released to the growing oranges on the trees. This prevents the temperature inside the orange from dropping below freezing, which would damage the fruit.

The figure shows bare tree branches covered with ice and icicles.
The ice on these trees released large amounts of energy when it froze, helping to prevent the temperature of the trees from dropping below C size 12{0°C} {} . Water is intentionally sprayed on orchards to help prevent hard frosts. (credit: Hermann Hammer)

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask