<< Chapter < Page Chapter >> Page >

Step 3. To get the magnitude R size 12{R } {} of the resultant, use the Pythagorean theorem:

R = R x 2 + R y 2 . size 12{R= sqrt {R rSub { size 8{x} } rSup { size 8{2} } +R rSub { size 8{y} } rSup { size 8{2} } } "."} {}

Step 4. To get the direction of the resultant:

θ = tan 1 ( R y / R x ) . size 12{θ="tan" rSup { size 8{ - 1} } \( R rSub { size 8{y} } /R rSub { size 8{x} } \) "."} {}

The following example illustrates this technique for adding vectors using perpendicular components.

Adding vectors using analytical methods

Add the vector A size 12{A} {} to the vector B size 12{B} {} shown in [link] , using perpendicular components along the x - and y -axes. The x - and y -axes are along the east–west and north–south directions, respectively. Vector A size 12{A} {} represents the first leg of a walk in which a person walks 53 . 0 m size 12{"53" "." "0 m"} {} in a direction 20 . 0 º size 12{"20" "." 0º } {} north of east. Vector B size 12{B} {} represents the second leg, a displacement of 34 . 0 m size 12{"34" "." "0 m"} {} in a direction 63 . 0 º size 12{"63" "." 0º } {} north of east.

Two vectors A and B are shown. The tail of the vector A is at origin. Both the vectors are in the first quadrant. Vector A is of magnitude fifty three units and is inclined at an angle of twenty degrees to the horizontal. From the head of the vector A another vector B of magnitude 34 units is drawn and is inclined at angle sixty three degrees with the horizontal. The resultant of two vectors is drawn from the tail of the vector A to the head of the vector B.
Vector A size 12{A} {} has magnitude 53 . 0 m size 12{"53" "." "0 m"} {} and direction 20 . 0 º size 12{"20" "." 0 { size 12{ circ } } } {} north of the x -axis. Vector B size 12{B} {} has magnitude 34 . 0 m size 12{"34" "." "0 m"} {} and direction 63 . 0 º size 12{"63" "." 0° } {} north of the x -axis. You can use analytical methods to determine the magnitude and direction of R size 12{R} {} .

Strategy

The components of A size 12{A} {} and B size 12{B} {} along the x - and y -axes represent walking due east and due north to get to the same ending point. Once found, they are combined to produce the resultant.

Solution

Following the method outlined above, we first find the components of A size 12{A} {} and B size 12{B} {} along the x - and y -axes. Note that A = 53.0 m size 12{"A" "=" "53.0 m"} {} , θ A = 20.0º size 12{"θ" "subA" "=" "20.0°" } {} , B = 34.0 m size 12{"B" "=" "34.0" "m"} {} , and θ B = 63.0º size 12{θ rSub { size 8{B} } } {} . We find the x -components by using A x = A cos θ size 12{A rSub { size 8{x} } =A"cos"θ} {} , which gives

A x = A cos θ A = ( 53. 0 m ) ( cos 20.0º ) = ( 53. 0 m ) ( 0 .940 ) = 49. 8 m alignl { stack { size 12{A rSub { size 8{x} } =A"cos"θ rSub { size 8{A} } = \( "53" "." 0" m" \) \( "cos""20" "." 0 { size 12{ circ } } \) } {} #" "= \( "53" "." 0" m" \) \( 0 "." "940" \) ="49" "." 8" m" {} } } {}

and

B x = B cos θ B = ( 34 . 0 m ) ( cos 63.0º ) = ( 34 . 0 m ) ( 0 . 454 ) = 15 . 4 m . alignl { stack { size 12{B rSub { size 8{x} } =B"cos"θ rSub { size 8{B} } = \( "34" "." 0" m" \) \( "cos""63" "." 0 { size 12{ circ } } \) } {} #" "= \( "34" "." 0" m" \) \( 0 "." "454" \) ="15" "." 4" m" {} } } {}

Similarly, the y -components are found using A y = A sin θ A size 12{A rSub { size 8{y} } =A"sin"θ rSub { size 8{A} } } {} :

A y = A sin θ A = ( 53 . 0 m ) ( sin 20.0º ) = ( 53 . 0 m ) ( 0 . 342 ) = 18 . 1 m alignl { stack { size 12{A rSub { size 8{y} } =A"sin"θ rSub { size 8{A} } = \( "53" "." 0" m" \) \( "sin""20" "." 0 { size 12{ circ } } \) } {} #" "= \( "53" "." 0" m" \) \( 0 "." "342" \) ="18" "." 1" m" {} } } {}

and

B y = B sin θ B = ( 34 . 0 m ) ( sin 63 . 0 º ) = ( 34 . 0 m ) ( 0 . 891 ) = 30 . 3 m . alignl { stack { size 12{B rSub { size 8{y} } =B"sin"θ rSub { size 8{B} } = \( "34" "." 0" m" \) \( "sin""63" "." 0 { size 12{ circ } } \) } {} #" "= \( "34" "." 0" m" \) \( 0 "." "891" \) ="30" "." 3" m" "." {} } } {}

The x - and y -components of the resultant are thus

R x = A x + B x = 49 . 8 m + 15 . 4 m = 65 . 2 m size 12{R rSub { size 8{x} } =A rSub { size 8{x} } +B rSub { size 8{x} } ="49" "." 8" m"+"15" "." 4" m"="65" "." 2" m"} {}

and

R y = A y + B y = 18 . 1 m + 30 . 3 m = 48 . 4 m . size 12{R rSub { size 8{y} } =A rSub { size 8{y} } +B rSub { size 8{y} } ="18" "." 1" m"+"30" "." 3" m"="48" "." 4" m."} {}

Now we can find the magnitude of the resultant by using the Pythagorean theorem:

R = R x 2 + R y 2 = ( 65 . 2 ) 2 + ( 48 . 4 ) 2 m size 12{R= sqrt {R rSub { size 8{x} } rSup { size 8{2} } +R rSub { size 8{y} } rSup { size 8{2} } } = sqrt { \( "65" "." 2 \) rSup { size 8{2} } + \( "48" "." 4 \) rSup { size 8{2} } } " m"} {}

so that

R = 81.2 m. size 12{R ="81.2" "m."} {}

Finally, we find the direction of the resultant:

θ = tan 1 ( R y / R x ) =+ tan 1 ( 48 . 4 / 65 . 2 ) . size 12{θ="tan" rSup { size 8{ - 1} } \( R rSub { size 8{y} } /R rSub { size 8{x} } \) "=+""tan" rSup { size 8{ - 1} } \( "48" "." 4/"65" "." 2 \) "."} {}

Thus,

θ = tan 1 ( 0 . 742 ) = 36 . 6 º . size 12{θ="tan" rSup { size 8{ - 1} } \( 0 "." "742" \) ="36" "." 6 { size 12{ circ } } "."} {}
The addition of two vectors A and B is shown. Vector A is of magnitude fifty three units and is inclined at an angle of twenty degrees to the horizontal. Vector B is of magnitude thirty four units and is inclined at angle sixty three degrees to the horizontal. The components of vector A are shown as dotted vectors A X is equal to forty nine point eight meter along x axis and A Y is equal to eighteen point one meter along Y axis. The components of vector B are also shown as dotted vectors B X is equal to fifteen point four meter and B Y is equal to thirty point three meter. The horizontal component of the resultant R X is equal to A X plus B X is equal to sixty five point two meter. The vertical component of the resultant R Y is equal to A Y plus B Y is equal to forty eight point four meter. The magnitude of the resultant of two vectors is eighty one point two meters. The direction of the resultant R is in thirty six point six degree from the vector A in anticlockwise direction.
Using analytical methods, we see that the magnitude of R size 12{R} {} is 81 . 2 m size 12{"81" "." "2 m"} {} and its direction is 36 . size 12{"36" "." 6°} {} north of east.

Discussion

This example illustrates the addition of vectors using perpendicular components. Vector subtraction using perpendicular components is very similar—it is just the addition of a negative vector.

Subtraction of vectors is accomplished by the addition of a negative vector. That is, A B A + ( –B ) size 12{A – B equiv A+ \( - B \) } {} . Thus, the method for the subtraction of vectors using perpendicular components is identical to that for addition . The components of –B are the negatives of the components of B size 12{B} {} . The x - and y -components of the resultant A B = R size 12{A- bold "B = R"} {} are thus

R x = A x + ( B x ) size 12{R rSub { size 8{x} } =A rSub { size 8{x} } +-B rSub { size 8{x} } } {}

and

R y = A y + ( B y ) size 12{R rSub { size 8{y} } =A rSub { size 8{y} } +-B rSub { size 8{y} } } {}

and the rest of the method outlined above is identical to that for addition. (See [link] .)

Analyzing vectors using perpendicular components is very useful in many areas of physics, because perpendicular quantities are often independent of one another. The next module, Projectile Motion , is one of many in which using perpendicular components helps make the picture clear and simplifies the physics.

In this figure, the subtraction of two vectors A and B is shown. A red colored vector A is inclined at an angle theta A to the positive of x axis. From the head of vector A a blue vector negative B is drawn. Vector B is in west of south direction. The resultant of the vector A and vector negative B is shown as a black vector R from the tail of vector A to the head of vector negative B. The resultant R is inclined to x axis at an angle theta below the x axis. The components of the vectors are also shown along the coordinate axes as dotted lines of their respective colors.
The subtraction of the two vectors shown in [link] . The components of –B size 12{B} {} are the negatives of the components of B size 12{B} {} . The method of subtraction is the same as that for addition.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask