<< Chapter < Page Chapter >> Page >
  • Discuss the wave character of light.
  • Identify the changes when light enters a medium.

We know that visible light is the type of electromagnetic wave to which our eyes respond. Like all other electromagnetic waves, it obeys the equation

c = f λ , size 12{c=f`λ,} {}

where c = 3 × 10 8 m/s size 12{c=3 times "10" rSup { size 8{8} } `"m/s"} {} is the speed of light in vacuum, f size 12{f} {} is the frequency of the electromagnetic waves, and λ size 12{λ} {} is its wavelength. The range of visible wavelengths is approximately 380 to 760 nm. As is true for all waves, light travels in straight lines and acts like a ray when it interacts with objects several times as large as its wavelength. However, when it interacts with smaller objects, it displays its wave characteristics prominently. Interference is the hallmark of a wave, and in [link] both the ray and wave characteristics of light can be seen. The laser beam emitted by the observatory epitomizes a ray, traveling in a straight line. However, passing a pure-wavelength beam through vertical slits with a size close to the wavelength of the beam reveals the wave character of light, as the beam spreads out horizontally into a pattern of bright and dark regions caused by systematic constructive and destructive interference. Rather than spreading out, a ray would continue traveling straight ahead after passing through slits.

Making connections: waves

The most certain indication of a wave is interference. This wave characteristic is most prominent when the wave interacts with an object that is not large compared with the wavelength. Interference is observed for water waves, sound waves, light waves, and (as we will see in Special Relativity ) for matter waves, such as electrons scattered from a crystal.

Part a of the figure shows a thin bright orange laser beam emitted from an observatory traveling in a straight line up into a starry sky. Part b of the figure shows a horizontal pattern of orange red spots produced when a laser beam has passed through a grid of slits. The central spot is the brightest and the spots get dimmer as you move away from the center..
(a) The laser beam emitted by an observatory acts like a ray, traveling in a straight line. This laser beam is from the Paranal Observatory of the European Southern Observatory. (credit: Yuri Beletsky, European Southern Observatory) (b) A laser beam passing through a grid of vertical slits produces an interference pattern—characteristic of a wave. (credit: Shim'on and Slava Rybka, Wikimedia Commons)

Light has wave characteristics in various media as well as in a vacuum. When light goes from a vacuum to some medium, like water, its speed and wavelength change, but its frequency f size 12{f} {} remains the same. (We can think of light as a forced oscillation that must have the frequency of the original source.) The speed of light in a medium is v = c / n size 12{v=c/n} {} , where n is its index of refraction. If we divide both sides of equation c = f λ size 12{c=f`λ} {} by n size 12{n} {} , we get c / n = v = f λ / n size 12{c/n=v=f`λ/n} {} . This implies that v = f λ n size 12{v=f`λ rSub { size 8{n} } } {} , where λ n size 12{λ rSub { size 8{n} } } {} is the wavelength in a medium    and that

λ n = λ n , size 12{λ rSub { size 8{n} } = { {λ} over {n} } ,} {}

where λ size 12{λ} {} is the wavelength in vacuum and n size 12{n} {} is the medium’s index of refraction. Therefore, the wavelength of light is smaller in any medium than it is in vacuum. In water, for example, which has n = 1 . 333 size 12{n=1 "." "333"} {} , the range of visible wavelengths is ( 380 nm ) /1 . 333 size 12{ \( "380"`"nm" \) "/1" "." "333"} {} to ( 760 nm ) /1 . 333 size 12{ \( "760"`"nm" \) "/1" "." "333"} {} , or λ n = 285 to 570 nm size 12{λ rSub { size 8{n} } ="285"`"to"`"570"`"nm"} {} . Although wavelengths change while traveling from one medium to another, colors do not, since colors are associated with frequency.

Section summary

  • Wave optics is the branch of optics that must be used when light interacts with small objects or whenever the wave characteristics of light are considered.
  • Wave characteristics are those associated with interference and diffraction.
  • Visible light is the type of electromagnetic wave to which our eyes respond and has a wavelength in the range of 380 to 760 nm.
  • Like all EM waves, the following relationship is valid in vacuum: c = f λ size 12{c=f`λ} {} , where c = 3 × 10 8 m/s size 12{c=3 times "10" rSup { size 8{8} } `"m/s"} {} is the speed of light, f size 12{f} {} is the frequency of the electromagnetic wave, and λ size 12{λ} {} is its wavelength in vacuum.
  • The wavelength λ n size 12{λ rSub { size 8{n} } } {} of light in a medium with index of refraction n size 12{n} {} is λ n = λ / n size 12{λ rSub { size 8{n} } =λ/n} {} . Its frequency is the same as in vacuum.

Conceptual questions

What type of experimental evidence indicates that light is a wave?

Got questions? Get instant answers now!

Give an example of a wave characteristic of light that is easily observed outside the laboratory.

Got questions? Get instant answers now!

Problems&Exercises

Show that when light passes from air to water, its wavelength decreases to 0.750 times its original value.

1 / 1 . 333 = 0 . 750 size 12{1/1 "." "333"=0 "." "750"} {}

Got questions? Get instant answers now!

Find the range of visible wavelengths of light in crown glass.

Got questions? Get instant answers now!

What is the index of refraction of a material for which the wavelength of light is 0.671 times its value in a vacuum? Identify the likely substance.

1.49, Polystyrene

Got questions? Get instant answers now!

Analysis of an interference effect in a clear solid shows that the wavelength of light in the solid is 329 nm. Knowing this light comes from a He-Ne laser and has a wavelength of 633 nm in air, is the substance zircon or diamond?

Got questions? Get instant answers now!

What is the ratio of thicknesses of crown glass and water that would contain the same number of wavelengths of light?

0.877 glass to water

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask