<< Chapter < Page Chapter >> Page >

The lowest frequency, called the fundamental frequency    , is thus for the longest wavelength, which is seen to be λ 1 = 2 L size 12{λ rSub { size 8{1} } =2`"L"} {} . Therefore, the fundamental frequency is f 1 = v w / λ 1 = v w / 2 L size 12{f rSub { size 8{1} } =v rSub { size 8{w} } /λ rSub { size 8{1} } =v rSub { size 8{w} } /2`"L"} {} . In this case, the overtones    or harmonics are multiples of the fundamental frequency. As seen in [link] , the first harmonic can easily be calculated since λ 2 = L size 12{λ rSub { size 8{2} } =L} {} . Thus, f 2 = v w / λ 2 = v w / 2 L = 2 f 1 size 12{f rSub { size 8{2} } =v rSub { size 8{w} } /λ rSub { size 8{2} } =v rSub { size 8{w} } /2`"L"=2f rSub { size 8{1} } } {} . Similarly, f 3 = 3 f 1 size 12{f rSub { size 8{3} } =3f rSub { size 8{1} } } {} , and so on. All of these frequencies can be changed by adjusting the tension in the string. The greater the tension, the greater v w size 12{v rSub { size 8{w} } } {} is and the higher the frequencies. This observation is familiar to anyone who has ever observed a string instrument being tuned. We will see in later chapters that standing waves are crucial to many resonance phenomena, such as in sounding boxes on string instruments.

The graph shows a wave with wavelength lambda one equal to L, which has two loops. There three nodes and two antinodes in the figure. The length of one loop is L.
The figure shows a string oscillating at its fundamental frequency.
first overtone is shown as the wave length if lambda two is L and there are three nodes and two antinodes in the figure. For first overtone the frequency f two is equal to two times f one.
First and second harmonic frequencies are shown.

Beats

Striking two adjacent keys on a piano produces a warbling combination usually considered to be unpleasant. The superposition of two waves of similar but not identical frequencies is the culprit. Another example is often noticeable in jet aircraft, particularly the two-engine variety, while taxiing. The combined sound of the engines goes up and down in loudness. This varying loudness happens because the sound waves have similar but not identical frequencies. The discordant warbling of the piano and the fluctuating loudness of the jet engine noise are both due to alternately constructive and destructive interference as the two waves go in and out of phase. [link] illustrates this graphically.

The graph shows the superimposition of two similar but non-identical waves. Beats are produced by alternating destructive and constructive waves with equal amplitude but different frequencies. The resultant wave is the one with rising and falling amplitude over different intervals of time.
Beats are produced by the superposition of two waves of slightly different frequencies but identical amplitudes. The waves alternate in time between constructive interference and destructive interference, giving the resulting wave a time-varying amplitude.

The wave resulting from the superposition of two similar-frequency waves has a frequency that is the average of the two. This wave fluctuates in amplitude, or beats , with a frequency called the beat frequency    . We can determine the beat frequency by adding two waves together mathematically. Note that a wave can be represented at one point in space as

x = X cos t T = X cos ft , size 12{x=X" cos"` left ( { {2π t} over {T} } right )=X" cos " left (2π ital "ft" right )","} {}

where f = 1 / T size 12{f= {1} slash {T} } {} is the frequency of the wave. Adding two waves that have different frequencies but identical amplitudes produces a resultant

x = x 1 + x 2 . size 12{x=x rSub { size 8{1} } +x rSub { size 8{2} } "."} {}

More specifically,

x = X cos f 1 t + X cos f 2 t . size 12{x=X"cos" left (2π`f rSub { size 8{1} } t right )+X"cos" left (2π`f rSub { size 8{2} } t right )"."} {}

Using a trigonometric identity, it can be shown that

x = 2 X cos π f B t cos f ave t , size 12{x=2X"cos" left (π`f rSub { size 8{B} } t right )"cos" left (2π`f rSub { size 8{"ave"} } t right )","} {}

where

f B = f 1 f 2 size 12{f rSub { size 8{B} } = lline f rSub { size 8{1} } - f rSub { size 8{2} } rline } {}

is the beat frequency, and f ave size 12{f rSub { size 8{"ave"} } } {} is the average of f 1 size 12{f rSub { size 8{1} } } {} and f 2 size 12{f rSub { size 8{2} } } {} . These results mean that the resultant wave has twice the amplitude and the average frequency of the two superimposed waves, but it also fluctuates in overall amplitude at the beat frequency f B size 12{f rSub { size 8{"B"} } } {} . The first cosine term in the expression effectively causes the amplitude to go up and down. The second cosine term is the wave with frequency f ave size 12{f rSub { size 8{"ave"} } } {} . This result is valid for all types of waves. However, if it is a sound wave, providing the two frequencies are similar, then what we hear is an average frequency that gets louder and softer (or warbles) at the beat frequency.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask