<< Chapter < Page Chapter >> Page >
  • Define pressure in terms of weight.
  • Explain the variation of pressure with depth in a fluid.
  • Calculate density given pressure and altitude.

If your ears have ever popped on a plane flight or ached during a deep dive in a swimming pool, you have experienced the effect of depth on pressure in a fluid. At the Earth’s surface, the air pressure exerted on you is a result of the weight of air above you. This pressure is reduced as you climb up in altitude and the weight of air above you decreases. Under water, the pressure exerted on you increases with increasing depth. In this case, the pressure being exerted upon you is a result of both the weight of water above you and that of the atmosphere above you. You may notice an air pressure change on an elevator ride that transports you many stories, but you need only dive a meter or so below the surface of a pool to feel a pressure increase. The difference is that water is much denser than air, about 775 times as dense.

Consider the container in [link] . Its bottom supports the weight of the fluid in it. Let us calculate the pressure exerted on the bottom by the weight of the fluid. That pressure    is the weight of the fluid mg size 12{ ital "mg"} {} divided by the area A size 12{A} {} supporting it (the area of the bottom of the container):

P = mg A . size 12{P= { { ital "mg"} over {A} } } {}

We can find the mass of the fluid from its volume and density:

m = ρV . size 12{m=ρV} {}

The volume of the fluid V size 12{V} {} is related to the dimensions of the container. It is

V = Ah , size 12{V= ital "Ah"} {}

where A size 12{A} {} is the cross-sectional area and h size 12{h} {} is the depth. Combining the last two equations gives

m = ρ Ah . size 12{m=ρ ital "Ah"} {}

If we enter this into the expression for pressure, we obtain

P = ρ Ah g A . size 12{P= { { left (ρ ital "Ah" right )g} over {A} } } {}

The area cancels, and rearranging the variables yields

P = hρg . size 12{P=hρg} {}

This value is the pressure due to the weight of a fluid . The equation has general validity beyond the special conditions under which it is derived here. Even if the container were not there, the surrounding fluid would still exert this pressure, keeping the fluid static. Thus the equation P = hρg size 12{P=hρg} {} represents the pressure due to the weight of any fluid of average density ρ size 12{ρ} {} at any depth h size 12{h} {} below its surface. For liquids, which are nearly incompressible, this equation holds to great depths. For gases, which are quite compressible, one can apply this equation as long as the density changes are small over the depth considered. [link] illustrates this situation.

A container with fluid filled to a depth h. The fluid’s weight w equal to m times g is shown by an arrow pointing downward. A denotes the area of the fluid at the bottom of the container and as well as on the surface.
The bottom of this container supports the entire weight of the fluid in it. The vertical sides cannot exert an upward force on the fluid (since it cannot withstand a shearing force), and so the bottom must support it all.

Calculating the average pressure and force exerted: what force must a dam withstand?

In [link] , we calculated the mass of water in a large reservoir. We will now consider the pressure and force acting on the dam retaining water. (See [link] .) The dam is 500 m wide, and the water is 80.0 m deep at the dam. (a) What is the average pressure on the dam due to the water? (b) Calculate the force exerted against the dam and compare it with the weight of water in the dam (previously found to be 1.96 × 10 13 N ).

Strategy for (a)

The average pressure P ¯ due to the weight of the water is the pressure at the average depth h ¯ of 40.0 m, since pressure increases linearly with depth.

Solution for (a)

The average pressure due to the weight of a fluid is

P ¯ = h ¯ ρg . size 12{P=hρg} {}

Entering the density of water from [link] and taking h ¯ size 12{h} {} to be the average depth of 40.0 m, we obtain

P ¯ = ( 40.0 m ) 10 3 kg m 3 9.80 m s 2 = 3.92 × 10 5 N m 2 = 392 kPa.

Strategy for (b)

The force exerted on the dam by the water is the average pressure times the area of contact:

F = P ¯ A . size 12{F= {overline {P}} A} {}

Solution for (b)

We have already found the value for P ¯ size 12{ { bar {P}}} {} . The area of the dam is A = 80.0 m × 500 m = 4.00 × 10 4 m 2 size 12{A="80" "." 0`m times "500"`m=4 "." "00" times "10" rSup { size 8{4} } `m rSup { size 8{2} } } {} , so that

F = ( 3.92 × 10 5 N/m 2 ) ( 4.00 × 10 4 m 2 ) = 1.57 × 10 10 N. alignl { stack { size 12{F= \( 3 "." "92" times "10" rSup { size 8{5} } `"N/m" rSup { size 8{2} } \) \( 4 "." "00" times "10" rSup { size 8{4} } `m rSup { size 8{2} } \) } {} #" "=1 "." "57" times "10" rSup { size 8{"10"} } `N "." {} } } {}

Discussion

Although this force seems large, it is small compared with the 1.96 × 10 13 N size 12{1 "." "96" times "10" rSup { size 8{"13"} } `N} {} weight of the water in the reservoir—in fact, it is only 0.0800% of the weight. Note that the pressure found in part (a) is completely independent of the width and length of the lake—it depends only on its average depth at the dam. Thus the force depends only on the water’s average depth and the dimensions of the dam, not on the horizontal extent of the reservoir. In the diagram, the thickness of the dam increases with depth to balance the increasing force due to the increasing pressure.epth to balance the increasing force due to the increasing pressure.

Got questions? Get instant answers now!

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask