<< Chapter < Page Chapter >> Page >
  • Understand the analogy between angular momentum and linear momentum.
  • Observe the relationship between torque and angular momentum.
  • Apply the law of conservation of angular momentum.

Why does Earth keep on spinning? What started it spinning to begin with? And how does an ice skater manage to spin faster and faster simply by pulling her arms in? Why does she not have to exert a torque to spin faster? Questions like these have answers based in angular momentum, the rotational analog to linear momentum.

By now the pattern is clear—every rotational phenomenon has a direct translational analog. It seems quite reasonable, then, to define angular momentum     L size 12{L} {} as

L = . size 12{L=Iω} {}

This equation is an analog to the definition of linear momentum as p = mv size 12{p= ital "mv"} {} . Units for linear momentum are kg m /s size 12{"kg" cdot m rSup { size 8{2} } "/s"} {} while units for angular momentum are kg m 2 /s size 12{"kg" cdot m rSup { size 8{2} } "/s"} {} . As we would expect, an object that has a large moment of inertia I size 12{I} {} , such as Earth, has a very large angular momentum. An object that has a large angular velocity ω size 12{ω} {} , such as a centrifuge, also has a rather large angular momentum.

Making connections

Angular momentum is completely analogous to linear momentum, first presented in Uniform Circular Motion and Gravitation . It has the same implications in terms of carrying rotation forward, and it is conserved when the net external torque is zero. Angular momentum, like linear momentum, is also a property of the atoms and subatomic particles.

Calculating angular momentum of the earth

Strategy

No information is given in the statement of the problem; so we must look up pertinent data before we can calculate L = size 12{L=Iω} {} . First, according to [link] , the formula for the moment of inertia of a sphere is

I = 2 MR 2 5 size 12{I= { {2 ital "MR" rSup { size 8{2} } } over {5} } } {}

so that

L = = 2 MR 2 ω 5 . size 12{L=Iω= { {2 ital "MR" rSup { size 8{2} } ω} over {5} } } {}

Earth’s mass M size 12{M} {} is 5 . 979 × 10 24 kg size 12{5 "." "979" times "10" rSup { size 8{"24"} } "kg"} {} and its radius R size 12{R} {} is 6 . 376 × 10 6 m size 12{6 "." "376" times "10" rSup { size 8{6} } m} {} . The Earth’s angular velocity ω size 12{ω} {} is, of course, exactly one revolution per day, but we must covert ω size 12{ω} {} to radians per second to do the calculation in SI units.

Solution

Substituting known information into the expression for L size 12{L} {} and converting ω size 12{ω} {} to radians per second gives

L = 0 . 4 5 . 979 × 10 24 kg 6 . 376 × 10 6 m 2 1 rev d = 9 . 72 × 10 37 kg m 2 rev/d . alignl { stack { size 12{L=0 "." 4 left (5 "." "979" times "10" rSup { size 8{"24"} } " kg" right ) left (6 "." "376" times "10" rSup { size 8{6} } " m" right ) rSup { size 8{2} } left ( { {1" rev"} over {d} } right )} {} #" "=9 "." "72" times "10" rSup { size 8{"37"} } " kg" cdot m rSup { size 8{2} } "rev/d" {} } } {}

Substituting size 12{2π} {} rad for 1 size 12{1} {} rev and 8 . 64 × 10 4 s size 12{8 "." "64" times "10" rSup { size 8{4} } s} {} for 1 day gives

L = 9 . 72 × 10 37 kg m 2 rad/rev 8 . 64 × 10 4 s/d 1 rev/d = 7 . 07 × 10 33 kg m 2 /s . alignl { stack { size 12{L= left (9 "." "72" times "10" rSup { size 8{"37"} } " kg" cdot m rSup { size 8{2} } right ) left ( { {2π" rad/rev"} over {8 "." "64" times "10" rSup { size 8{4} } " s/d"} } right ) left (1" rev/d" right )} {} #" "=7 "." "07" times "10" rSup { size 8{"33"} } " kg" cdot m rSup { size 8{2} } "/s" {} } } {}

Discussion

This number is large, demonstrating that Earth, as expected, has a tremendous angular momentum. The answer is approximate, because we have assumed a constant density for Earth in order to estimate its moment of inertia.

Got questions? Get instant answers now!

When you push a merry-go-round, spin a bike wheel, or open a door, you exert a torque. If the torque you exert is greater than opposing torques, then the rotation accelerates, and angular momentum increases. The greater the net torque, the more rapid the increase in L size 12{L} {} . The relationship between torque and angular momentum is

net τ = Δ L Δ t . size 12{"net "τ= { {ΔL} over {Δt} } } {}

This expression is exactly analogous to the relationship between force and linear momentum, F = Δ p / Δ t size 12{F=Δp/Δt} {} . The equation net τ = Δ L Δ t size 12{"net "τ= { {ΔL} over {Δt} } } {} is very fundamental and broadly applicable. It is, in fact, the rotational form of Newton’s second law.

Calculating the torque putting angular momentum into a lazy susan

[link] shows a Lazy Susan food tray being rotated by a person in quest of sustenance. Suppose the person exerts a 2.50 N force perpendicular to the lazy Susan’s 0.260-m radius for 0.150 s. (a) What is the final angular momentum of the lazy Susan if it starts from rest, assuming friction is negligible? (b) What is the final angular velocity of the lazy Susan, given that its mass is 4.00 kg and assuming its moment of inertia is that of a disk?

The given figure shows a lazy Susan on which various eatables like cake, salad grapes, and a drink are kept. A hand is shown that applies a force F, indicated by a leftward pointing horizontal arrow. This force is perpendicular to the radius r and thus tangential to the circular lazy Susan.
A partygoer exerts a torque on a lazy Susan to make it rotate. The equation net τ = Δ L Δ t size 12{"net "τ= { {ΔL} over {Δt} } } {} gives the relationship between torque and the angular momentum produced.

Strategy

We can find the angular momentum by solving net τ = Δ L Δ t size 12{"net "τ= { {ΔL} over {Δt} } } {} for Δ L size 12{ΔL} {} , and using the given information to calculate the torque. The final angular momentum equals the change in angular momentum, because the lazy Susan starts from rest. That is, Δ L = L size 12{ΔL=L} {} . To find the final velocity, we must calculate ω size 12{ω} {} from the definition of L size 12{L} {} in L = size 12{L=Iω} {} .

Solution for (a)

Solving net τ = Δ L Δ t size 12{"net "τ= { {ΔL} over {Δt} } } {} for Δ L size 12{ΔL} {} gives

Δ L = net τ Δt . size 12{ΔL= left ("net "τ right ) cdot Δt} {}

Because the force is perpendicular to r size 12{r} {} , we see that net τ = rF size 12{"net "τ= ital "rF"} {} , so that

L = rF Δ t = ( 0 . 260 m ) ( 2.50 N ) ( 0.150 s ) = 9 . 75 × 10 2 kg m 2 / s .

Solution for (b)

The final angular velocity can be calculated from the definition of angular momentum,

L = . size 12{L=Iω} {}

Solving for ω size 12{ω} {} and substituting the formula for the moment of inertia of a disk into the resulting equation gives

ω = L I = L 1 2 MR 2 . size 12{ω= { {L} over {I} } = { {L} over { { size 8{1} } wideslash { size 8{2} } ital "MR" rSup { size 8{2} } } } } {}

And substituting known values into the preceding equation yields

ω = 9 . 75 × 10 2 kg m 2 /s 0 . 500 4 . 00 kg 0 . 260 m = 0 . 721 rad/s . size 12{ω= { {9 "." "75" times "10" rSup { size 8{ - 2} } " kg" cdot m rSup { size 8{2} } "/s"} over { left (0 "." "500" right ) left (4 "." "00"" kg" right ) left (0 "." "260"" m" right )} } =0 "." "721"" rad/s"} {}

Discussion

Note that the imparted angular momentum does not depend on any property of the object but only on torque and time. The final angular velocity is equivalent to one revolution in 8.71 s (determination of the time period is left as an exercise for the reader), which is about right for a lazy Susan.

Got questions? Get instant answers now!

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask