<< Chapter < Page Chapter >> Page >
  • Describe uniform circular motion.
  • Explain non-uniform circular motion.
  • Calculate angular acceleration of an object.
  • Observe the link between linear and angular acceleration.

Uniform Circular Motion and Gravitation discussed only uniform circular motion, which is motion in a circle at constant speed and, hence, constant angular velocity. Recall that angular velocity ω size 12{ω} {} was defined as the time rate of change of angle θ size 12{θ} {} :

ω = Δ θ Δ t , size 12{ω= { {Δθ} over {Δt} } ","} {}

where θ size 12{θ} {} is the angle of rotation as seen in [link] . The relationship between angular velocity ω size 12{ω} {} and linear velocity v size 12{v} {} was also defined in Rotation Angle and Angular Velocity as

v = size 12{v=rω} {}

or

ω = v r , size 12{ω= { {v} over {r} } } {}

where r size 12{r} {} is the radius of curvature, also seen in [link] . According to the sign convention, the counter clockwise direction is considered as positive direction and clockwise direction as negative

The given figure shows counterclockwise circular motion with a horizontal line, depicting radius r, drawn from the center of the circle to the right side on its circumference and another line is drawn in such a manner that it makes an acute angle delta theta with the horizontal line. Tangential velocity vectors are indicated at the end of the two lines. At the bottom right side of the figure, the formula for angular velocity is given as v upon r.
This figure shows uniform circular motion and some of its defined quantities.

Angular velocity is not constant when a skater pulls in her arms, when a child starts up a merry-go-round from rest, or when a computer’s hard disk slows to a halt when switched off. In all these cases, there is an angular acceleration    , in which ω size 12{ω} {} changes. The faster the change occurs, the greater the angular acceleration. Angular acceleration α size 12{α} {} is defined as the rate of change of angular velocity. In equation form, angular acceleration is expressed as follows:

α = Δ ω Δ t , size 12{α= { {Δω} over {Δt} } ","} {}

where Δ ω size 12{Δω} {} is the change in angular velocity    and Δ t size 12{Δt} {} is the change in time. The units of angular acceleration are rad/s /s size 12{ left ("rad/s" right )"/s"} {} , or rad/s 2 size 12{"rad/s" rSup { size 8{2} } } {} . If ω size 12{ω} {} increases, then α size 12{α} {} is positive. If ω size 12{ω} {} decreases, then α size 12{α} {} is negative.

Calculating the angular acceleration and deceleration of a bike wheel

Suppose a teenager puts her bicycle on its back and starts the rear wheel spinning from rest to a final angular velocity of 250 rpm in 5.00 s. (a) Calculate the angular acceleration in rad/s 2 size 12{"rad/s" rSup { size 8{2} } } {} . (b) If she now slams on the brakes, causing an angular acceleration of 87.3 rad/s 2 size 12{"-87" "." 3`"rad/s" rSup { size 8{2} } } {} , how long does it take the wheel to stop?

Strategy for (a)

The angular acceleration can be found directly from its definition in α = Δ ω Δ t size 12{α= { {Δω} over {Δt} } } {} because the final angular velocity and time are given. We see that Δ ω size 12{Δω} {} is 250 rpm and Δ t size 12{Δt} {} is 5.00 s.

Solution for (a)

Entering known information into the definition of angular acceleration, we get

α = Δ ω Δ t = 250 rpm 5.00 s . alignl { stack { size 12{α= { {Δω} over {Δt} } } {} #size 12{ {}= { {"250"" rpm"} over {5 "." "00 s"} } "."} {} } } {}

Because Δ ω size 12{Δω} {} is in revolutions per minute (rpm) and we want the standard units of rad/s 2 size 12{"rad/s" rSup { size 8{2} } } {} for angular acceleration, we need to convert Δ ω size 12{Δω} {} from rpm to rad/s:

Δ ω = 250 rev min 2π rad rev 1 min 60 sec = 26.2 rad s . alignl { stack { size 12{Δω="250" { {"rev"} over {"min"} } cdot { {2π" rad"} over {"60" "." "0 s"} } } {} #size 12{ {}="26" "." 2 { {"rad"} over {"s"} } } {} } } {}

Entering this quantity into the expression for α size 12{α} {} , we get

α = Δ ω Δ t = 26.2 rad/s 5.00 s = 5.24  rad/s 2 . alignl { stack { size 12{α= { {Δω} over {Δt} } } {} #size 12{ {}= { {"26" "." 2" rad/s"} over {5 "." "00"" s"} } "." } {} # size 12{ {}=5 "." "24"" rad/s" rSup { size 8{2} } } {}} } {}

Strategy for (b)

In this part, we know the angular acceleration and the initial angular velocity. We can find the stoppage time by using the definition of angular acceleration and solving for Δ t size 12{Δt} {} , yielding

Δ t = Δ ω α . size 12{Δt= { {Δω} over {α} } "."} {}

Solution for (b)

Here the angular velocity decreases from 26.2 rad/s size 12{"26" "." 2`"rad/s"} {} (250 rpm) to zero, so that Δ ω size 12{Δω} {} is 26.2 rad/s , and α size 12{α} {} is given to be 87.3 rad/s 2 size 12{"-87" "." 3`"rad/s" rSup { size 8{2} } } {} . Thus,

Δ t = 26.2 rad/s 87.3 rad/s 2 = 0.300 s. alignl { stack { size 12{Δt= { { - "26" "." 2`"rad/s"} over { - "87" "." 3`"rad/s" rSup { size 8{2} } } } } {} #=0 "." "300"`"s" "." {} } } {}

Discussion

Note that the angular acceleration as the girl spins the wheel is small and positive; it takes 5 s to produce an appreciable angular velocity. When she hits the brake, the angular acceleration is large and negative. The angular velocity quickly goes to zero. In both cases, the relationships are analogous to what happens with linear motion. For example, there is a large deceleration when you crash into a brick wall—the velocity change is large in a short time interval.

Got questions? Get instant answers now!

Questions & Answers

how did you get 1640
Noor Reply
If auger is pair are the roots of equation x2+5x-3=0
Peter Reply
Wayne and Dennis like to ride the bike path from Riverside Park to the beach. Dennis’s speed is seven miles per hour faster than Wayne’s speed, so it takes Wayne 2 hours to ride to the beach while it takes Dennis 1.5 hours for the ride. Find the speed of both bikers.
MATTHEW Reply
420
Sharon
from theory: distance [miles] = speed [mph] × time [hours] info #1 speed_Dennis × 1.5 = speed_Wayne × 2 => speed_Wayne = 0.75 × speed_Dennis (i) info #2 speed_Dennis = speed_Wayne + 7 [mph] (ii) use (i) in (ii) => [...] speed_Dennis = 28 mph speed_Wayne = 21 mph
George
Let W be Wayne's speed in miles per hour and D be Dennis's speed in miles per hour. We know that W + 7 = D and W * 2 = D * 1.5. Substituting the first equation into the second: W * 2 = (W + 7) * 1.5 W * 2 = W * 1.5 + 7 * 1.5 0.5 * W = 7 * 1.5 W = 7 * 3 or 21 W is 21 D = W + 7 D = 21 + 7 D = 28
Salma
Devon is 32 32​​ years older than his son, Milan. The sum of both their ages is 54 54​. Using the variables d d​ and m m​ to represent the ages of Devon and Milan, respectively, write a system of equations to describe this situation. Enter the equations below, separated by a comma.
Aaron Reply
find product (-6m+6) ( 3m²+4m-3)
SIMRAN Reply
-42m²+60m-18
Salma
what is the solution
bill
how did you arrive at this answer?
bill
-24m+3+3mÁ^2
Susan
i really want to learn
Amira
I only got 42 the rest i don't know how to solve it. Please i need help from anyone to help me improve my solving mathematics please
Amira
Hw did u arrive to this answer.
Aphelele
hi
Bajemah
-6m(3mA²+4m-3)+6(3mA²+4m-3) =-18m²A²-24m²+18m+18mA²+24m-18 Rearrange like items -18m²A²-24m²+42m+18A²-18
Salma
complete the table of valuesfor each given equatio then graph. 1.x+2y=3
Jovelyn Reply
x=3-2y
Salma
y=x+3/2
Salma
Hi
Enock
given that (7x-5):(2+4x)=8:7find the value of x
Nandala
3x-12y=18
Kelvin
please why isn't that the 0is in ten thousand place
Grace Reply
please why is it that the 0is in the place of ten thousand
Grace
Send the example to me here and let me see
Stephen
A meditation garden is in the shape of a right triangle, with one leg 7 feet. The length of the hypotenuse is one more than the length of one of the other legs. Find the lengths of the hypotenuse and the other leg
Marry Reply
how far
Abubakar
cool u
Enock
state in which quadrant or on which axis each of the following angles given measure. in standard position would lie 89°
Abegail Reply
hello
BenJay
hi
Method
I am eliacin, I need your help in maths
Rood
how can I help
Sir
hmm can we speak here?
Amoon
however, may I ask you some questions about Algarba?
Amoon
hi
Enock
what the last part of the problem mean?
Roger
The Jones family took a 15 mile canoe ride down the Indian River in three hours. After lunch, the return trip back up the river took five hours. Find the rate, in mph, of the canoe in still water and the rate of the current.
cameron Reply
Shakir works at a computer store. His weekly pay will be either a fixed amount, $925, or $500 plus 12% of his total sales. How much should his total sales be for his variable pay option to exceed the fixed amount of $925.
mahnoor Reply
I'm guessing, but it's somewhere around $4335.00 I think
Lewis
12% of sales will need to exceed 925 - 500, or 425 to exceed fixed amount option. What amount of sales does that equal? 425 ÷ (12÷100) = 3541.67. So the answer is sales greater than 3541.67. Check: Sales = 3542 Commission 12%=425.04 Pay = 500 + 425.04 = 925.04. 925.04 > 925.00
Munster
difference between rational and irrational numbers
Arundhati Reply
When traveling to Great Britain, Bethany exchanged $602 US dollars into £515 British pounds. How many pounds did she receive for each US dollar?
Jakoiya Reply
how to reduced echelon form
Solomon Reply
Jazmine trained for 3 hours on Saturday. She ran 8 miles and then biked 24 miles. Her biking speed is 4 mph faster than her running speed. What is her running speed?
Zack Reply
d=r×t the equation would be 8/r+24/r+4=3 worked out
Sheirtina
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask