<< Chapter < Page Chapter >> Page >

This illustrates the power of clear thinking. We might have guessed incorrectly that if light is emitted simultaneously, then two observers halfway between the sources would see the flashes simultaneously. But careful analysis shows this not to be the case. Einstein was brilliant at this type of thought experiment (in German, “Gedankenexperiment”). He very carefully considered how an observation is made and disregarded what might seem obvious. The validity of thought experiments, of course, is determined by actual observation. The genius of Einstein is evidenced by the fact that experiments have repeatedly confirmed his theory of relativity.

In summary: Two events are defined to be simultaneous if an observer measures them as occurring at the same time (such as by receiving light from the events). Two events are not necessarily simultaneous to all observers.

Time dilation

The consideration of the measurement of elapsed time and simultaneity leads to an important relativistic effect.

Time dilation

Time dilation is the phenomenon of time passing slower for an observer who is moving relative to another observer.

Suppose, for example, an astronaut measures the time it takes for light to cross her ship, bounce off a mirror, and return. (See [link] .) How does the elapsed time the astronaut measures compare with the elapsed time measured for the same event by a person on the Earth? Asking this question (another thought experiment) produces a profound result. We find that the elapsed time for a process depends on who is measuring it. In this case, the time measured by the astronaut is smaller than the time measured by the Earth-bound observer. The passage of time is different for the observers because the distance the light travels in the astronaut’s frame is smaller than in the Earth-bound frame. Light travels at the same speed in each frame, and so it will take longer to travel the greater distance in the Earth-bound frame.

For part a, an astronaut is standing inside the spaceship with an electronic timer. The timer is showing the time delta-t-zero. The astronaut has to measure time for an activity which has a mirror, the Sun as a source of light, and a receiver. A ray from the light source is striking the mirror and getting reflected back to the receiver. The distance between the source of light and mirror is given by d. For part b, the same activity is observed by a man standing on Earth. He has an electronic timer showing the time as delta-t. For the observer on earth the activity is fragmented into three portions. In the first portion, the ray of light is travelling a distance of and strikes the mirror in the second portion. The third portion shows the reflected ray of light striking the receiver represented by s and having a vertical distance of d. The horizontal distance L observed by the man from the beginning of the event till the end portion is given as L equals to velocity v into delta t upon two.
(a) An astronaut measures the time Δ t 0 for light to cross her ship using an electronic timer. Light travels a distance 2 D in the astronaut’s frame. (b) A person on the Earth sees the light follow the longer path 2 s and take a longer time Δ t . (c) These triangles are used to find the relationship between the two distances 2 D and 2 s .

To quantitatively verify that time depends on the observer, consider the paths followed by light as seen by each observer. (See [link] (c).) The astronaut sees the light travel straight across and back for a total distance of 2 D size 12{2D} {} , twice the width of her ship. The Earth-bound observer sees the light travel a total distance 2 s size 12{2s} {} . Since the ship is moving at speed v size 12{v} {} to the right relative to the Earth, light moving to the right hits the mirror in this frame. Light travels at a speed c size 12{c} {} in both frames, and because time is the distance divided by speed, the time measured by the astronaut is

Δ t 0 = 2 D c . size 12{Δt rSub { size 8{0} } = { {2D} over {c} } } {}

This time has a separate name to distinguish it from the time measured by the Earth-bound observer.

Making connections: gps navigation

For GPS navigation to work properly, satellites have to take into account the effects of both special relativity and general relativity. GPS satellites move at speeds of a few miles per second, and although these speeds are just tiny fractions of the speed of light, the accuracy of timing that is needed to pinpoint a position requires that we account for the effects of special relativity (that is, the slower motion of satellite time relative to an observer on Earth). Additionally, GPS satellites are in orbit roughly ten thousand miles above the Earth, where the gravitational force is weaker. From the theory of general relativity , the weaker gravitational force means that time on the satellite is ticking faster. If these two relativistic effects were not accounted for, GPS units would lose their accuracy in a matter of minutes.

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask