<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Define thermal hazard, shock hazard, and short circuit.
  • Explain what effects various levels of current have on the human body.

There are two known hazards of electricity—thermal and shock. A thermal hazard    is one where excessive electric power causes undesired thermal effects, such as starting a fire in the wall of a house. A shock hazard    occurs when electric current passes through a person. Shocks range in severity from painful, but otherwise harmless, to heart-stopping lethality. This section considers these hazards and the various factors affecting them in a quantitative manner. Electrical Safety: Systems and Devices will consider systems and devices for preventing electrical hazards.

Thermal hazards

Electric power causes undesired heating effects whenever electric energy is converted to thermal energy at a rate faster than it can be safely dissipated. A classic example of this is the short circuit    , a low-resistance path between terminals of a voltage source. An example of a short circuit is shown in [link] . Insulation on wires leading to an appliance has worn through, allowing the two wires to come into contact. Such an undesired contact with a high voltage is called a short . Since the resistance of the short, r size 12{r} {} , is very small, the power dissipated in the short, P = V 2 / r size 12{P = V rSup { size 8{2} } /r} {} , is very large. For example, if V size 12{V} {} is 120 V and r size 12{r} {} is 0 . 100 Ω size 12{0 "." "100" %OMEGA } {} , then the power is 144 kW, much greater than that used by a typical household appliance. Thermal energy delivered at this rate will very quickly raise the temperature of surrounding materials, melting or perhaps igniting them.

Part a shows an electric toaster of resistance capital R connected to an A C voltage source. The wires used to connect the toaster to the supply are worn out in one place, allowing them to come into contact with an undesired, lower resistance path, symbolized by lowercase r. Part b of the figure represents the circuit diagram for the electric connection described in part a. The voltage source is connected to two paths in parallel: the toaster with resistance capital R, and the undesired lower resistance path, symbolized by lowercase r.
A short circuit is an undesired low-resistance path across a voltage source. (a) Worn insulation on the wires of a toaster allow them to come into contact with a low resistance r size 12{r} {} . Since P = V 2 / r size 12{P = V rSup { size 8{2} } /r} {} , thermal power is created so rapidly that the cord melts or burns. (b) A schematic of the short circuit.

One particularly insidious aspect of a short circuit is that its resistance may actually be decreased due to the increase in temperature. This can happen if the short creates ionization. These charged atoms and molecules are free to move and, thus, lower the resistance r size 12{r} {} . Since P = V 2 / r size 12{P = V rSup { size 8{2} } /r} {} , the power dissipated in the short rises, possibly causing more ionization, more power, and so on. High voltages, such as the 480-V AC used in some industrial applications, lend themselves to this hazard, because higher voltages create higher initial power production in a short.

Another serious, but less dramatic, thermal hazard occurs when wires supplying power to a user are overloaded with too great a current. As discussed in the previous section, the power dissipated in the supply wires is P = I 2 R w size 12{P = I rSup { size 8{2} } R rSub { size 8{w} } } {} , where R w size 12{R rSub { size 8{w} } } {} is the resistance of the wires and I size 12{I} {} the current flowing through them. If either I size 12{I} {} or R w size 12{R rSub { size 8{w} } } {} is too large, the wires overheat. For example, a worn appliance cord (with some of its braided wires broken) may have R w = 2 . 00 Ω size 12{R rSub { size 8{w} } =2 "." "00"` %OMEGA } {} rather than the 0 . 100 Ω size 12{0 "." "100" %OMEGA } {} it should be. If 10.0 A of current passes through the cord, then P = I 2 R w = 200 W size 12{P = I rSup { size 8{2} } R rSub { size 8{w} } ="200"`W} {} is dissipated in the cord—much more than is safe. Similarly, if a wire with a 0 . 100 - Ω size 12{0 "." "100"- %OMEGA } {} resistance is meant to carry a few amps, but is instead carrying 100 A, it will severely overheat. The power dissipated in the wire will in that case be P = 1000 W size 12{P = "1000"`W} {} . Fuses and circuit breakers are used to limit excessive currents. (See [link] and [link] .) Each device opens the circuit automatically when a sustained current exceeds safe limits.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask