<< Chapter < Page Chapter >> Page >

Making connections: conservation of energy

Lenz’s law is a manifestation of the conservation of energy. The induced emf produces a current that opposes the change in flux, because a change in flux means a change in energy. Energy can enter or leave, but not instantaneously. Lenz’s law is a consequence. As the change begins, the law says induction opposes and, thus, slows the change. In fact, if the induced emf were in the same direction as the change in flux, there would be a positive feedback that would give us free energy from no apparent source—conservation of energy would be violated.

Calculating emf: how great is the induced emf?

Calculate the magnitude of the induced emf when the magnet in [link] (a) is thrust into the coil, given the following information: the single loop coil has a radius of 6.00 cm and the average value of B cos θ size 12{B"cos"θ} {} (this is given, since the bar magnet’s field is complex) increases from 0.0500 T to 0.250 T in 0.100 s.

Strategy

To find the magnitude of emf, we use Faraday’s law of induction as stated by emf = N Δ Φ Δ t , but without the minus sign that indicates direction:

emf = N Δ Φ Δ t .

Solution

We are given that N = 1 size 12{N=1} {} and Δ t = 0 . 100 s , but we must determine the change in flux Δ Φ size 12{ΔΦ} {} before we can find emf. Since the area of the loop is fixed, we see that

Δ Φ = Δ ( BA cos θ ) = A Δ ( B cos θ ). size 12{ΔΦ=Δ \( BA"cos"θ \) =AΔ \( B"cos"θ \) } {}

Now Δ ( B cos θ ) = 0 . 200 T size 12{Δ \( B"cos"θ \) =0 "." "200"`T} {} , since it was given that B cos θ size 12{B"cos"θ} {} changes from 0.0500 to 0.250 T. The area of the loop is A = πr 2 = ( 3 . 14 . . . ) ( 0 . 060 m ) 2 = 1 . 13 × 10 2 m 2 size 12{A=πr rSup { size 8{2} } = \( 3 "." "14" "." "." "." \) \( 0 "." "060"`m \) rSup { size 8{2} } =1 "." "13" times "10" rSup { size 8{ - 2} } `m rSup { size 8{2} } } {} . Thus,

Δ Φ = ( 1.13 × 10 2 m 2 ) ( 0.200 T ). size 12{ΔΦ= \( 1 "." "13" times "10" rSup { size 8{ - 2} } " m" rSup { size 8{2} } \) \( 0 "." "200"" T" \) } {}

Entering the determined values into the expression for emf gives

Emf = N Δ Φ Δ t = ( 1.13 × 10 2 m 2 ) ( 0 . 200 T ) 0 . 100 s = 22 . 6 mV. size 12{E=N { {ΔΦ} over {Δt} } = { { \( 1 "." "13" times "10" rSup { size 8{ - 2} } " m" rSup { size 8{2} } \) \( 0 "." "200"" T" \) } over {0 "." "100"" s"} } ="22" "." 6" mV"} {}

Discussion

While this is an easily measured voltage, it is certainly not large enough for most practical applications. More loops in the coil, a stronger magnet, and faster movement make induction the practical source of voltages that it is.

Got questions? Get instant answers now!

Phet explorations: faraday's electromagnetic lab

Play with a bar magnet and coils to learn about Faraday's law. Move a bar magnet near one or two coils to make a light bulb glow. View the magnetic field lines. A meter shows the direction and magnitude of the current. View the magnetic field lines or use a meter to show the direction and magnitude of the current. You can also play with electromagnets, generators and transformers!

Faraday's Electromagnetic Lab

Section summary

  • Faraday’s law of induction states that the emf induced by a change in magnetic flux is
    emf = N Δ Φ Δ t size 12{"emf"= - N { {ΔΦ} over {Δt} } } {}

    when flux changes by Δ Φ size 12{ΔΦ} {} in a time Δ t size 12{Δt} {} .

  • If emf is induced in a coil, N is its number of turns.
  • The minus sign means that the emf creates a current I size 12{I} {} and magnetic field B size 12{B} {} that oppose the change in flux Δ Φ size 12{ΔΦ} {} —this opposition is known as Lenz’s law.

Conceptual questions

A person who works with large magnets sometimes places her head inside a strong field. She reports feeling dizzy as she quickly turns her head. How might this be associated with induction?

Got questions? Get instant answers now!

A particle accelerator sends high-velocity charged particles down an evacuated pipe. Explain how a coil of wire wrapped around the pipe could detect the passage of individual particles. Sketch a graph of the voltage output of the coil as a single particle passes through it.

Got questions? Get instant answers now!

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask