<< Chapter < Page Chapter >> Page >

where B is the bulk modulus (see [link] ), V 0 size 12{V rSub { size 8{0} } } {} is the original volume, and F A size 12{ { {F} over {A} } } {} is the force per unit area applied uniformly inward on all surfaces. Note that no bulk moduli are given for gases.

What are some examples of bulk compression of solids and liquids? One practical example is the manufacture of industrial-grade diamonds by compressing carbon with an extremely large force per unit area. The carbon atoms rearrange their crystalline structure into the more tightly packed pattern of diamonds. In nature, a similar process occurs deep underground, where extremely large forces result from the weight of overlying material. Another natural source of large compressive forces is the pressure created by the weight of water, especially in deep parts of the oceans. Water exerts an inward force on all surfaces of a submerged object, and even on the water itself. At great depths, water is measurably compressed, as the following example illustrates.

Calculating change in volume with deformation: how much is water compressed at great ocean depths?

Calculate the fractional decrease in volume ( Δ V V 0 size 12{ { {ΔV} over {V rSub { size 8{0} } } } } {} ) for seawater at 5.00 km depth, where the force per unit area is 5 . 00 × 10 7 N / m 2 size 12{5 "." "00" times "10" rSup { size 8{7} } N/m rSup { size 8{2} } } {} .

Strategy

Equation Δ V = 1 B F A V 0 is the correct physical relationship. All quantities in the equation except Δ V V 0 are known.

Solution

Solving for the unknown Δ V V 0 gives

Δ V V 0 = 1 B F A . size 12{ { {ΔV} over {V rSub { size 8{0} } } } = { {1} over {B} } { {F} over {A} } } {}

Substituting known values with the value for the bulk modulus B from [link] ,

Δ V V 0 = 5.00 × 10 7 N/m 2 2 . 2 × 10 9 N/m 2 = 0.023 = 2.3%.

Discussion

Although measurable, this is not a significant decrease in volume considering that the force per unit area is about 500 atmospheres (1 million pounds per square foot). Liquids and solids are extraordinarily difficult to compress.

Got questions? Get instant answers now!

Conversely, very large forces are created by liquids and solids when they try to expand but are constrained from doing so—which is equivalent to compressing them to less than their normal volume. This often occurs when a contained material warms up, since most materials expand when their temperature increases. If the materials are tightly constrained, they deform or break their container. Another very common example occurs when water freezes. Water, unlike most materials, expands when it freezes, and it can easily fracture a boulder, rupture a biological cell, or crack an engine block that gets in its way.

Other types of deformations, such as torsion or twisting, behave analogously to the tension, shear, and bulk deformations considered here.

Section summary

  • Hooke's law is given by
    F = k Δ L , size 12{F=kΔL} {}

    where Δ L size 12{ΔL} {} is the amount of deformation (the change in length), F size 12{F} {} is the applied force, and k size 12{k} {} is a proportionality constant that depends on the shape and composition of the object and the direction of the force. The relationship between the deformation and the applied force can also be written as

    Δ L = 1 Y F A L 0 , size 12{ΔL= { {1} over {Y} } { {F} over {A} } L rSub { size 8{0} } } {}

    where Y size 12{Y} {} is Young's modulus , which depends on the substance, A size 12{A} {} is the cross-sectional area, and L 0 size 12{L rSub { size 8{0} } } {} is the original length.

  • The ratio of force to area, F A size 12{ { {F} over {A} } } {} , is defined as stress , measured in N/m 2 .
  • The ratio of the change in length to length, Δ L L 0 size 12{ { {ΔL} over {L rSub { size 8{0} } } } } {} , is defined as strain (a unitless quantity). In other words,
    stress = Y × strain . size 12{"stress"=Y times "strain"} {}
  • The expression for shear deformation is
    Δ x = 1 S F A L 0 , size 12{Δx= { {1} over {S} } { {F} over {A} } L rSub { size 8{0} } } {}

    where S is the shear modulus and F is the force applied perpendicular to L 0 and parallel to the cross-sectional area A .

  • The relationship of the change in volume to other physical quantities is given by
    Δ V = 1 B F A V 0 , size 12{ΔV= { {1} over {B} } { {F} over {A} } V rSub { size 8{0} } } {}

    where B is the bulk modulus, V 0 is the original volume, and F A size 12{ { {F} over {A} } } {} is the force per unit area applied uniformly inward on all surfaces.

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask