<< Chapter < Page Chapter >> Page >

where B is the bulk modulus (see [link] ), V 0 size 12{V rSub { size 8{0} } } {} is the original volume, and F A size 12{ { {F} over {A} } } {} is the force per unit area applied uniformly inward on all surfaces. Note that no bulk moduli are given for gases.

What are some examples of bulk compression of solids and liquids? One practical example is the manufacture of industrial-grade diamonds by compressing carbon with an extremely large force per unit area. The carbon atoms rearrange their crystalline structure into the more tightly packed pattern of diamonds. In nature, a similar process occurs deep underground, where extremely large forces result from the weight of overlying material. Another natural source of large compressive forces is the pressure created by the weight of water, especially in deep parts of the oceans. Water exerts an inward force on all surfaces of a submerged object, and even on the water itself. At great depths, water is measurably compressed, as the following example illustrates.

Calculating change in volume with deformation: how much is water compressed at great ocean depths?

Calculate the fractional decrease in volume ( Δ V V 0 size 12{ { {ΔV} over {V rSub { size 8{0} } } } } {} ) for seawater at 5.00 km depth, where the force per unit area is 5 . 00 × 10 7 N / m 2 size 12{5 "." "00" times "10" rSup { size 8{7} } N/m rSup { size 8{2} } } {} .

Strategy

Equation Δ V = 1 B F A V 0 is the correct physical relationship. All quantities in the equation except Δ V V 0 are known.

Solution

Solving for the unknown Δ V V 0 gives

Δ V V 0 = 1 B F A . size 12{ { {ΔV} over {V rSub { size 8{0} } } } = { {1} over {B} } { {F} over {A} } } {}

Substituting known values with the value for the bulk modulus B from [link] ,

Δ V V 0 = 5.00 × 10 7 N/m 2 2 . 2 × 10 9 N/m 2 = 0.023 = 2.3%.

Discussion

Although measurable, this is not a significant decrease in volume considering that the force per unit area is about 500 atmospheres (1 million pounds per square foot). Liquids and solids are extraordinarily difficult to compress.

Got questions? Get instant answers now!

Conversely, very large forces are created by liquids and solids when they try to expand but are constrained from doing so—which is equivalent to compressing them to less than their normal volume. This often occurs when a contained material warms up, since most materials expand when their temperature increases. If the materials are tightly constrained, they deform or break their container. Another very common example occurs when water freezes. Water, unlike most materials, expands when it freezes, and it can easily fracture a boulder, rupture a biological cell, or crack an engine block that gets in its way.

Other types of deformations, such as torsion or twisting, behave analogously to the tension, shear, and bulk deformations considered here.

Section summary

  • Hooke's law is given by
    F = k Δ L , size 12{F=kΔL} {}

    where Δ L size 12{ΔL} {} is the amount of deformation (the change in length), F size 12{F} {} is the applied force, and k size 12{k} {} is a proportionality constant that depends on the shape and composition of the object and the direction of the force. The relationship between the deformation and the applied force can also be written as

    Δ L = 1 Y F A L 0 , size 12{ΔL= { {1} over {Y} } { {F} over {A} } L rSub { size 8{0} } } {}

    where Y size 12{Y} {} is Young's modulus , which depends on the substance, A size 12{A} {} is the cross-sectional area, and L 0 size 12{L rSub { size 8{0} } } {} is the original length.

  • The ratio of force to area, F A size 12{ { {F} over {A} } } {} , is defined as stress , measured in N/m 2 .
  • The ratio of the change in length to length, Δ L L 0 size 12{ { {ΔL} over {L rSub { size 8{0} } } } } {} , is defined as strain (a unitless quantity). In other words,
    stress = Y × strain . size 12{"stress"=Y times "strain"} {}
  • The expression for shear deformation is
    Δ x = 1 S F A L 0 , size 12{Δx= { {1} over {S} } { {F} over {A} } L rSub { size 8{0} } } {}

    where S is the shear modulus and F is the force applied perpendicular to L 0 and parallel to the cross-sectional area A .

  • The relationship of the change in volume to other physical quantities is given by
    Δ V = 1 B F A V 0 , size 12{ΔV= { {1} over {B} } { {F} over {A} } V rSub { size 8{0} } } {}

    where B is the bulk modulus, V 0 is the original volume, and F A size 12{ { {F} over {A} } } {} is the force per unit area applied uniformly inward on all surfaces.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask