<< Chapter < Page Chapter >> Page >

Explain what phosphorescence is and how it differs from fluorescence. Which process typically takes longer and why?

Got questions? Get instant answers now!

An electron is excited from the ground state of an atom (energy level 1) into a highly excited state (energy level 8). Which of the following electron behaviors represents the fluorescence effect by the atom?

  1. The electron remains at level 8 for a very long time, then transitions up to level 9.
  2. The electron transitions directly down from level 8 to level 1.
  3. The electron transitions from level 8 to level 1 and then returns quickly to level 8.
  4. The electron transitions from level 8 to level 6, then to level 5, then to level 3, then to level 1.

(d)

Got questions? Get instant answers now!

Describe the process of fluorescence in terms of the emission of photons as electron transitions between energy states. Specifically, explain how this process differs from ordinary atomic emission.

Got questions? Get instant answers now!

Section summary

  • An important atomic process is fluorescence, defined to be any process in which an atom or molecule is excited by absorbing a photon of a given energy and de-excited by emitting a photon of a lower energy.
  • Some states live much longer than others and are termed metastable.
  • Phosphorescence is the de-excitation of a metastable state.
  • Lasers produce coherent single-wavelength EM radiation by stimulated emission, in which a metastable state is stimulated to decay.
  • Lasing requires a population inversion, in which a majority of the atoms or molecules are in their metastable state.

Conceptual questions

How do the allowed orbits for electrons in atoms differ from the allowed orbits for planets around the sun? Explain how the correspondence principle applies here.

Got questions? Get instant answers now!

Atomic and molecular spectra are discrete. What does discrete mean, and how are discrete spectra related to the quantization of energy and electron orbits in atoms and molecules?

Got questions? Get instant answers now!

Hydrogen gas can only absorb EM radiation that has an energy corresponding to a transition in the atom, just as it can only emit these discrete energies. When a spectrum is taken of the solar corona, in which a broad range of EM wavelengths are passed through very hot hydrogen gas, the absorption spectrum shows all the features of the emission spectrum. But when such EM radiation passes through room-temperature hydrogen gas, only the Lyman series is absorbed. Explain the difference.

Got questions? Get instant answers now!

Lasers are used to burn and read CDs. Explain why a laser that emits blue light would be capable of burning and reading more information than one that emits infrared.

Got questions? Get instant answers now!

The coating on the inside of fluorescent light tubes absorbs ultraviolet light and subsequently emits visible light. An inventor claims that he is able to do the reverse process. Is the inventor’s claim possible?

Got questions? Get instant answers now!

What is the difference between fluorescence and phosphorescence?

Got questions? Get instant answers now!

How can you tell that a hologram is a true three-dimensional image and that those in 3-D movies are not?

Got questions? Get instant answers now!

Problem exercises

[link] shows the energy-level diagram for neon. (a) Verify that the energy of the photon emitted when neon goes from its metastable state to the one immediately below is equal to 1.96 eV. (b) Show that the wavelength of this radiation is 633 nm. (c) What wavelength is emitted when the neon makes a direct transition to its ground state?

(a) 1.96 eV

(b) ( 1240 eV·nm ) / ( 1 . 96 eV ) = 633 nm size 12{ \( "1240 eV·nm" \) / \( 1 "." "96 eV" \) =" 633 nm"} {}

(c) 60.0 nm

Got questions? Get instant answers now!

A helium-neon laser is pumped by electric discharge. What wavelength electromagnetic radiation would be needed to pump it? See [link] for energy-level information.

Got questions? Get instant answers now!

Ruby lasers have chromium atoms doped in an aluminum oxide crystal. The energy level diagram for chromium in a ruby is shown in [link] . What wavelength is emitted by a ruby laser?

The figure shows energy levels of chromium atoms in an aluminum oxide crystal. Ground state is at zero point zero electron volts, first metastable state is at one point seventy nine electron volts, second state is at two point three electron volts, and the third state is at three point zero electron volts.
Chromium atoms in an aluminum oxide crystal have these energy levels, one of which is metastable. This is the basis of a ruby laser. Visible light can pump the atom into an excited state above the metastable state to achieve a population inversion.

693 nm

Got questions? Get instant answers now!

(a) What energy photons can pump chromium atoms in a ruby laser from the ground state to its second and third excited states? (b) What are the wavelengths of these photons? Verify that they are in the visible part of the spectrum.

Got questions? Get instant answers now!

Some of the most powerful lasers are based on the energy levels of neodymium in solids, such as glass, as shown in [link] . (a) What average wavelength light can pump the neodymium into the levels above its metastable state? (b) Verify that the 1.17 eV transition produces 1 . 06 μm size 12{1 "." "06-μm"} {} radiation.

The figure shows different energy levels of neodymium atoms in glass. The ground state is at zero electron volts, first state is at zero point five zero electron volts, the metastable second state is at one point sixty seven electron volts, and the group state levels above metastable second are at two point one electron volts. The photons release one point seventeen electron volts at wavelength of one point zero six micro meters while coming from the metastable second state to first state.
Neodymium atoms in glass have these energy levels, one of which is metastable. The group of levels above the metastable state is convenient for achieving a population inversion, since photons of many different energies can be absorbed by atoms in the ground state.

(a) 590 nm

(b) ( 1240 eV·nm ) / ( 1 . 17 eV ) = 1.06 μm size 12{ \( "1240 eV·nm" \) / \( 1 "." "96 eV" \) =" 633 nm"} {}

Got questions? Get instant answers now!

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask