<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Determine the period of oscillation of a hanging pendulum.

The information presented in this section supports the following AP® learning objectives and science practices:

  • 3.B.3.1 The student is able to predict which properties determine the motion of a simple harmonic oscillator and what the dependence of the motion is on those properties. (S.P. 6.4, 7.2)
  • 3.B.3.2 The student is able to design a plan and collect data in order to ascertain the characteristics of the motion of a system undergoing oscillatory motion caused by a restoring force. (S.P. 4.2)
  • 3.B.3.3 The student can analyze data to identify qualitative or quantitative relationships between given values and variables (i.e., force, displacement, acceleration, velocity, period of motion, frequency, spring constant, string length, mass) associated with objects in oscillatory motion to use that data to determine the value of an unknown. (S.P. 2.2, 5.1)
  • 3.B.3.4 The student is able to construct a qualitative and/or a quantitative explanation of oscillatory behavior given evidence of a restoring force. (S.P. 2.2, 6.2)
In the figure, a horizontal bar is drawn. A perpendicular dotted line from the middle of the bar, depicting the equilibrium of pendulum, is drawn downward. A string of length L is tied to the bar at the equilibrium point. A circular bob of mass m is tied to the end of the string which is at a distance s from the equilibrium. The string is at an angle of theta with the equilibrium at the bar. A red arrow showing the time T of the oscillation of the mob is shown along the string line toward the bar. An arrow from the bob toward the equilibrium shows its restoring force asm g sine theta. A perpendicular arrow from the bob toward the ground depicts its mass as W equals to mg, and this arrow is at an angle theta with downward direction of string.
A simple pendulum has a small-diameter bob and a string that has a very small mass but is strong enough not to stretch appreciably. The linear displacement from equilibrium is s size 12{s} {} , the length of the arc. Also shown are the forces on the bob, which result in a net force of mg sin θ size 12{ - ital "mg""sin"θ} {} toward the equilibrium position—that is, a restoring force.

Pendulums are in common usage. Some have crucial uses, such as in clocks; some are for fun, such as a child’s swing; and some are just there, such as the sinker on a fishing line. For small displacements, a pendulum is a simple harmonic oscillator. A simple pendulum    is defined to have an object that has a small mass, also known as the pendulum bob, which is suspended from a light wire or string, such as shown in [link] . Exploring the simple pendulum a bit further, we can discover the conditions under which it performs simple harmonic motion, and we can derive an interesting expression for its period.

We begin by defining the displacement to be the arc length s size 12{s} {} . We see from [link] that the net force on the bob is tangent to the arc and equals mg sin θ size 12{ - ital "mg""sin"θ} {} . (The weight mg size 12{ ital "mg"} {} has components mg cos θ size 12{ ital "mg""cos"θ} {} along the string and mg sin θ size 12{ ital "mg""sin"θ} {} tangent to the arc.) Tension in the string exactly cancels the component mg cos θ size 12{ ital "mg""cos"θ} {} parallel to the string. This leaves a net restoring force back toward the equilibrium position at θ = 0 size 12{θ=0} {} .

Now, if we can show that the restoring force is directly proportional to the displacement, then we have a simple harmonic oscillator. In trying to determine if we have a simple harmonic oscillator, we should note that for small angles (less than about 15º size 12{"15"°} {} ), sin θ θ size 12{"sin"θ approx θ} {} ( sin θ size 12{"sin"θ} {} and θ size 12{θ} {} differ by about 1% or less at smaller angles). Thus, for angles less than about 15º size 12{"15"°} {} , the restoring force F size 12{F} {} is

F mg θ. size 12{F= - ital "mg"θ} {}

The displacement s size 12{s} {} is directly proportional to θ size 12{θ} {} . When θ size 12{θ} {} is expressed in radians, the arc length in a circle is related to its radius ( L size 12{L} {} in this instance) by:

Questions & Answers

if three forces F1.f2 .f3 act at a point on a Cartesian plane in the daigram .....so if the question says write down the x and y components ..... I really don't understand
Syamthanda Reply
hey , can you please explain oxidation reaction & redox ?
Boitumelo Reply
hey , can you please explain oxidation reaction and redox ?
Boitumelo
for grade 12 or grade 11?
Sibulele
the value of V1 and V2
Tumelo Reply
advantages of electrons in a circuit
Rethabile Reply
we're do you find electromagnetism past papers
Ntombifuthi
what a normal force
Tholulwazi Reply
it is the force or component of the force that the surface exert on an object incontact with it and which acts perpendicular to the surface
Sihle
what is physics?
Petrus Reply
what is the half reaction of Potassium and chlorine
Anna Reply
how to calculate coefficient of static friction
Lisa Reply
how to calculate static friction
Lisa
How to calculate a current
Tumelo
how to calculate the magnitude of horizontal component of the applied force
Mogano
How to calculate force
Monambi
a structure of a thermocouple used to measure inner temperature
Anna Reply
a fixed gas of a mass is held at standard pressure temperature of 15 degrees Celsius .Calculate the temperature of the gas in Celsius if the pressure is changed to 2×10 to the power 4
Amahle Reply
How is energy being used in bonding?
Raymond Reply
what is acceleration
Syamthanda Reply
a rate of change in velocity of an object whith respect to time
Khuthadzo
how can we find the moment of torque of a circular object
Kidist
Acceleration is a rate of change in velocity.
Justice
t =r×f
Khuthadzo
how to calculate tension by substitution
Precious Reply
hi
Shongi
hi
Leago
use fnet method. how many obects are being calculated ?
Khuthadzo
khuthadzo hii
Hulisani
how to calculate acceleration and tension force
Lungile Reply
you use Fnet equals ma , newtoms second law formula
Masego
please help me with vectors in two dimensions
Mulaudzi Reply
how to calculate normal force
Mulaudzi
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 1

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask