<< Chapter < Page Chapter >> Page >

Learning objectives

By the end of this section, you will be able to:

  • Explain the concept of pressure in the human body.
  • Explain systolic and diastolic blood pressures.
  • Describe pressures in the eye, lungs, spinal column, bladder, and skeletal system.

Pressure in the body

Next to taking a person's temperature and weight, measuring blood pressure is the most common of all medical examinations. Control of high blood pressure is largely responsible for the significant decreases in heart attack and stroke fatalities achieved in the last three decades. The pressures in various parts of the body can be measured and often provide valuable medical indicators. In this section, we consider a few examples together with some of the physics that accompanies them.

[link] lists some of the measured pressures in mm Hg, the units most commonly quoted.

Typical pressures in humans
Body system Gauge pressure in mm Hg
Blood pressures in large arteries (resting)
Maximum (systolic) 100–140
Minimum (diastolic) 60–90
Blood pressure in large veins 4–15
Eye 12–24
Brain and spinal fluid (lying down) 5–12
Bladder
While filling 0–25
When full 100–150
Chest cavity between lungs and ribs −8 to −4
Inside lungs −2 to +3
Digestive tract
Esophagus −2
Stomach 0–20
Intestines 10–20
Middle ear <1

Blood pressure

Common arterial blood pressure measurements typically produce values of 120 mm Hg and 80 mm Hg, respectively, for systolic and diastolic pressures. Both pressures have health implications. When systolic pressure is chronically high, the risk of stroke and heart attack is increased. If, however, it is too low, fainting is a problem. Systolic pressure increases dramatically during exercise to increase blood flow and returns to normal afterward. This change produces no ill effects and, in fact, may be beneficial to the tone of the circulatory system. Diastolic pressure can be an indicator of fluid balance. When low, it may indicate that a person is hemorrhaging internally and needs a transfusion. Conversely, high diastolic pressure indicates a ballooning of the blood vessels, which may be due to the transfusion of too much fluid into the circulatory system. High diastolic pressure is also an indication that blood vessels are not dilating properly to pass blood through. This can seriously strain the heart in its attempt to pump blood.

Blood leaves the heart at about 120 mm Hg but its pressure continues to decrease (to almost 0) as it goes from the aorta to smaller arteries to small veins (see [link] ). The pressure differences in the circulation system are caused by blood flow through the system as well as the position of the person. For a person standing up, the pressure in the feet will be larger than at the heart due to the weight of the blood ( P = hρg ) size 12{ \( P=hρg \) } {} . If we assume that the distance between the heart and the feet of a person in an upright position is 1.4 m, then the increase in pressure in the feet relative to that in the heart (for a static column of blood) is given by

Δ P = Δ hρg = 1.4 m 1050 kg /m 3 9.80 m /s 2 = 1 . 4 × 10 4 Pa = 108 mm Hg . size 12{ΔP=ρ ital "gh"= left ("1050"`"kgm" rSup { size 8{ - 3} } right ) left (9 "." "80"`"m/s" rSup { size 8{2} } right ) left (1 "." 4`m right )=1 "." 4 times "10" rSup { size 8{4} } `"Pa"="108"`"mm"`"Hg"} {}

Increase in pressure in the feet of a person

Δ P = Δ hρg = 1.4 m 1050 kg /m 3 9.80 m /s 2 = 1 . 4 × 10 4 Pa = 108 mm Hg . size 12{ΔP=ρ ital "gh"= left ("1050"`"kgm" rSup { size 8{ - 3} } right ) left (9 "." "80"`"m/s" rSup { size 8{2} } right ) left (1 "." 4`m right )=1 "." 4 times "10" rSup { size 8{4} } `"Pa"="108"`"mm"`"Hg"} {}

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask